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We will introduce our subject via an example, taken from a Chinese competition in 1978.

“Ten people queue up before a tap to fill their buckets. Each bucket requires a different time to
fill. In what order should the people queue up so as to minimize their combined waiting time?”

Common sense suggests that they queue up in ascending order of “bucket-filling time”. Let us
see if our intuition leads us astray. We will denote by T1 < T2 < · · · < T10 the times required to fill
the respective buckets.

If the people queue up in the order suggested, their combined waiting time will be given by
T = 10T1 + 9T2 + · · · + T10. For a different queueing order, the combined waiting time will be
S = 10S1 + 9S2 + · · ·+ S10, where (S1, S2, . . . , S10) is a permutation of (T1, T2, . . . , T10).

The two 10-tuples being different, there is a smallest index i for which Si 6= Ti. Then Sj = Ti < Si

for some j > i. Define S ′
i = Sj , S

′
j = Si and S ′

k = Sk for k 6= i, j. Let S ′ = 10S ′
1 + 9S ′

2 + · · ·+ S ′
10.

Then
S − S ′ = (11− i)(Si − S ′

i) + (11− j)(Sj − S ′
j) = (Si − Sj)(j − i) > 0.

Hence the switching results in a lower combined waiting time.

If (S ′
1, S

′
2, . . . , S

′
10) 6= (T1, T2, . . . , T10), this switching process can be repeated again. We will

reach (T1, T2, . . . , T10) in at most 9 steps. Since the combined waiting time is reduced in each step,
T is indeed the minimum combined waiting time.

We can generalize this example to the following result.

The Rearrangement Inequality.
Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be real numbers. For any permutation (a′1, a

′
2, . . . , a

′
n)

of (a1, a2, . . . , an), we have

a1b1 + a2b2 + · · ·+ anbn ≥ a′1b1 + a′2b2 + · · ·+ a′nbn

≥ anb1 + an−1b2 + · · ·+ a1bn,

with equality if and only if (a′1, a
′
2, . . . , a

′
n) is equal to (a1, a2, . . . , an) or (an, an−1, . . . , a1) respectively.

This can be proved by the switching process used in the introductory example. See for instance
[1] or [2], which contain more general results. Note that unlike many inequalities, we do not require
the numbers involved to be positive.

Corollary 1.
Let a1, a2, . . . , an be real numbers and (a′1, a

′
2, . . . , a

′
n) be a permutation of (a1, a2, . . . , an). Then

a2
1 + a2

2 + · · ·+ a2
n ≥ a1a

′
1 + a2a

′
2 + · · ·+ ana′n.



Corollary 2.
Let a1, a2, . . . , an be positive numbers and (a′1, a

′
2, . . . , a

′
n) be a permutation of (a1, a2, . . . , an). Then

a′1
a1

+
a′2
a2

+ · · ·+ a′n
an

≥ n.

A 1935 Kürschák problem in Hungary asked for the proof of Corollary 2, and a 1940 Moscow
Olympiad problem asked for the proof of the special case (a′1, a

′
2, . . . , a

′
n) = (a2, a3, . . . , an, a1).

We now illustrate the power of the Rearrangement Inequality by giving simple solutions to a
number of competition problems.

Example 1. (International Mathematical Olympiad, 1975)
Let x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn be real numbers. Let (z1, z2, · · · , zn) be a
permutation of (y1, y2, . . . , yn). Prove that

(x1 − y1)
2 + (x2 − y2)

2 + · · ·+ (xn − yn)
2 ≤ (x1 − z1)

2 + (x2 − z2)
2 + · · ·+ (xn − zn)2.

Solution:
Note that we have y2

1 + y2
2 + · · ·+ y2

n = z2
1 + z2

2 + · · ·+ z2
n. After expansion and simplification, the

desired inequality is equivalent to

x1y1 + x2y2 + · · ·+ xnyn ≥ x1z1 + x2z2 + · · ·+ xnzn,

which follows from the Rearrangement Inequality.

Example 2. (International Mathematical Olympiad, 1978)
Let a1, a2, . . . , an be distinct positive integers. Prove that

a1

12
+

a2

22
+ · · ·+ an

n2
≥ 1

1
+

1

2
+ · · ·+ 1

n
.

Solution:
Let (a′1, a

′
2, . . . , a

′
n) be the permutation of (a1, a2, . . . , an) such that a′1 ≤ a′2 ≤ · · · ≤ a′n. Then a′i ≥ i

for 1 ≤ i ≤ n. By the Rearrangement Inequality,

a1

12
+

a2

22
+ · · ·+ an

n2
≥ a′1

12
+

a′2
22

+ · · ·+ a′n
n2

≥ 1

12
+

2

22
+ · · ·+ n

n2

≥ 1

1
+

1

2
+ · · ·+ 1

n
.

Example 3. (International Mathematical Olympiad, 1964)
Let a, b and c be the sides of a triangle. Prove that

a2(b + c− a) + b2(c + a− b) + c2(a + b− c) ≤ 3abc.



Solution:
We may assume that a ≥ b ≥ c. We first prove that c(a + b− c) ≥ b(c + a− b) ≥ a(b + c− a). Note
that c(a + b− c)− b(c + a− b) = (b− c)(b + c− a) ≥ 0. The second inequality can be proved in the
same manner. By the Rearrangement Inequality, we have

a2(b + c− a) + b2(c + a− b) + c2(a + b− c) ≤ ba(b + c− a) + cb(c + a− b) + ac(a + b− c),

a2(b + c− a) + b2(c + a− b) + c2(a + b− c) ≤ ca(b + c− a) + ab(c + a− b) + bc(a + b− c).

Adding these two inequalities, the right side simplifies to 6abc. The desired inequality now follows.

Example 4. (International Mathematical Olympiad, 1983)
Let a, b and c be the sides of a triangle. Prove that a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

Solution:
We may assume that a ≥ b, c. If a ≥ b ≥ c, we have a(b + c− a) ≤ b(c + a− b) ≤ c(a + b− c) as in
Example 3. By the Rearrangement Inequality,

1

c
a(b + c− a) +

1

a
b(c + a− b) +

1

b
c(a + b− c)

≤ 1

a
a(b + c− a) +

1

b
b(c + a− b) +

1

c
c(a + b− c)

= a + b + c.

This simplifies to 1
c
a(b−a)+ 1

a
b(c− b)+ 1

b
c(a− c) ≤ 0, which is equivalent to the desired inequality.

If a ≥ c ≥ b, then a(b + c − a) ≤ c(a + b − c) ≤ b(c + a − b). All we have to do is interchange the
second and the third terms of the displayed lines above.

Simple as it sounds, the Rearrangement Inequality is a result of fundamental importance. We
shall derive from it many familiar and useful inequalities.

Example 5. The Arithmetic Mean Geometric Mean Inequality.
Let x1, x2, . . . , xn be positive numbers. Then

x1 + x2 + · · ·+ xn

n
≥ n
√

x1x2 · · ·xn,

with equality if and only if x1 = x2 = · · · = xn.

Proof:
Let G = n

√
x1x2 · · ·xn, a1 =

x1

G
, a2 =

x1x2

G2
, . . . , an =

x1x2 · · ·xn

Gn
= 1. By Corollary 2,

n ≤ a1

an

+
a2

a1

+ · · ·+ an

an−1

=
x1

G
+

x2

G
+ · · ·+ xn

G
,

which is equivalent to
x1 + x2 + · · ·+ xn

n
≥ G. Equality holds if and only if a1 = a2 = · · · = an, or

x1 = x2 = · · · = xn.

Example 6. The Geometric mean Harmonic Mean Inequality.
Let x1, x2, . . . , xn be positive numbers. Then

n
√

x1x2 · · ·xn ≥ n
1
x1

+ 1
x2

+ · · ·+ 1
xn

,

with equality if and only if x1 = x2 = · · · = xn.



Proof:
Let G, a1, a2, . . . , an be as in Example 5. By Corollary 2,

n ≤ a1

a2
+

a2

a3
+ · · ·+ an

a1
=

G

x1
+

G

x2
+ · · ·+ G

xn
,

which is equivalent to

G ≥ n
1
x1

+ 1
x2

+ · · ·+ 1
xn

.

Equality holds if and only if x1 = x2 = · · · = xn.

Example 7. The Root Mean Square Arithmetic Mean Inequality.
Let x1, x2, . . . , xn be real numbers. Then√

x2
1 + x2

2 + · · ·+ x2
n

n
≥ x1 + x2 + · · ·+ xn

n
,

with equality if and only if x1 = x2 = · · · = xn.

Proof:
By Corollary 1, we have

x2
1 + x2

2 + · · ·+ x2
n ≥ x1x2 + x2x3 + · · ·+ xnx1,

x2
1 + x2

2 + · · ·+ x2
n ≥ x1x3 + x2x4 + · · ·+ xnx2,

· · · ≥ · · ·
x2

1 + x2
2 + · · ·+ x2

n ≥ x1xn + x2x1 + · · ·+ xnxn−1.

Adding these and x2
1 + x2

2 + · · ·+ x2
n = x2

1 + x2
2 + · · ·+ x2

n, we have

n(x2
1 + x2

2 + · · ·+ x2
n) ≥ (x1 + x2 + · · ·+ x2

n)2,

which is equivalent to the desired result. Equality holds if and only if x1 = x2 = · · · = xn.

Example 8. Cauchy’s Inequality.
Let a1, a2, . . . an, b1, b2, . . . , bn be real numbers. Then

(a1b1 + a2b2 + · · ·+ anbn)2 ≤ (a2
1 + a2

2 + · · ·+ a2
n)(b2

1 + b2
2 + · · ·+ b2

n),

with equality if and only if for some constant k, ai = kbi for 1 ≤ i ≤ n or bi = kai for 1 ≤ i ≤ n.

Proof:
If a1 = a2 = · · · = an = 0 or b1 = b2 = · · · = bn = 0, the result is trivial. Otherwise, define

S =
√

a2
1 + a2

2 + · · ·+ a2
n and T =

√
b2
1 + b2

2 + · · ·+ b2
n. Since both are non-zero, we may let xi =

ai

S

and xn+i =
bi

T
for 1 ≤ i ≤ n. By Corollary 1,

2 =
a2

1 + a2
2 + · · ·+ a2

n

S2
+

b2
1 + b2

2 + · · ·+ b2
n

T 2

= x2
1 + x2

2 + · · ·+ x2
2n

≥ x1xn+1 + x2xn+2 + · · ·+ xnx2n + xn+1x1 + xn+2x2 + · · ·+ x2nxn

=
2(a1b1 + a2b2 + · · ·+ anbn)

ST
,

which is equivalent to the desired result. Equality holds if and only if xi = xn+i for 1 ≤ i ≤ n, or
aiT = biS for 1 ≤ i ≤ n.



We shall conclude this paper with two more examples whose solutions are left as exercises.

Example 9. (Chinese competition, 1984) Prove that

x2
1

x2

+
x2

2

x3

+ · · ·+ x2
n

x1

≥ x1 + x2 + · · ·+ xn

for all positive numbers x1, x2, . . . , xn.

Example 10. (Moscow Olympiad, 1963) Prove that

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2

for all positive numbers a, b and c.

References:

1. G. Hardy, J. Littlewood and G. Polya, “Inequalities”, Cambridge University Press, Cambridge,
paperback edition, (1988) 260-299.

2. K. Wu, The Rearrangement Inequality, Chapter 8 in “Lecture Notes in Mathematics Compe-
titions and Enrichment for High Schools” (in Chinese), ed. K. Wu et al., (1989) 8:1-8:25.


