
CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

A Very Long Bookshelf

task: bookshelf points: 100

The village of Vyšná Boca is located in a long and narrow valley. During the winter, it is not unusual to get
more than a meter of snow. On those days, the best thing you can do is to light the fireplace and climb into the
bed with a good book.

Recently, the villagers decided that they are tired of reading the same books over and over again and they
built a library. Since it had to fit into the valley, it was a long and narrow building with a single long bookshelf
inside. From time to time a villager would come, select a contiguous sequence of books, and take them home.
And from time to time a villager would come with a new set of books. He would then pick a place on the shelf,
push the original books to the left and to the right to make enough space, and he would place the books he just
brought into the gap.

Task specification

For the purpose of this task, the books will be identified by positive integers not exceeding 2 ·109. There can
be multiple copies of the same book in the library. The best books have numbers smaller or equal than 100. The
positions for the books are numbered from left to right, starting with zero. Initially, the bookshelf is empty.

Your task is to write a module that will simulate the actions in the library. Your module must provide the
implementation of the following five functions:

• void init()

procedure init

This function will be called just once at the beginning.

• int examine_book(int p)

function examine_book(p : longint) : longint

This function shall return the book that is currently at position p. (The book remains on the bookshelf.)

• void add_books(int k, int n, int *b)

procedure add_books(k, n : longint; b : array of longint)

This function shall take the n books provided in the array b and insert them into the bookshelf starting
at position k.

• void remove_books(int k, int n)

procedure remove_books(k, n : longint)

This function shall take n books starting with the book at position k, and remove these books from the
bookshelf.

• int best_books(int begin, int end)

function best_books(begin,end : longint) : longint

This function shall return the number of the best books that are in range begin, begin + 1, . . . , end. (The
books remain on the bookshelf.)

Evaluation

Your module will be evaluated on many different test cases. A test case is considered solved if all the calls
of your functions terminate correctly within the time limit, and all the calls to examine_book and best_books

return the correct books or the correct number.
Each test case can be described by three numbers: the total number C of function calls our grader will make,

the maximum number B of books at the bookshelf at any single time, the total number N of added or removed
books, and the sum Q – size of all queries about the best books. Additionally, some test cases do not contain
any calls to remove_books.

The limits for various test cases look as follows:

page 1 of 17 task: bookshelf

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

points 10 10 10 10 10 10 10 10 10 10
C 1000 2000 250000 250000 250000 500000 700000 500000 500000 500000
B 1500 2500 125000 125000 250000 700000 750000 750000 800000 106

N 1500 4000 250000 125000 250000 700000 750000 750000 5 · 106 5 · 106

Q 10000 10000 500000 109 106 1010 107 107 1010 109

remove? no yes yes no no no no no yes yes

Example

input

init()

add_books(0, 5, [1, 2, 3, 4, 5])

add_books(2, 2, [1000, 1002])

examine_book(3)

remove_books(3, 3)

best_books(1, 3)

output

examine_book(3): 1002

best_books(1, 3): 2

page 2 of 17 task: bookshelf

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Slovak Double Cross

task: doublecross points: 100

One of the national symbols of Slovakia is the Slovak coat of arms, shown
in the picture on the right. The most important feature on the coat of arms
is the silver double cross. You can also find this symbol on some of the Slovak
Euro coins, and, of course, in this task.

The double cross can easily be painted in a bitmap. Here are two examples:

..........

....1..... ..1..

..11111... .111.

....1..... ..1..

111111111. 11111

....1..... ..1..

....1.....

Formally, a double cross pattern consists of one vertical and two horizontal segments of ‘1’s. Additionally,
all the following requirements have to be met:

• The horizontal segments must not be in adjacent rows.

• The vertical segment must begin strictly above the horizontal segments and end strictly below them.

• The vertical segment must divide each horizontal segment into two equal halves.

• The upper horizontal segment must be strictly shorter than the lower one.

Note that the bitmap on the right contains the smallest possible double cross pattern.

Task specification

You are given a matrix of ‘0’s and ‘1’s. Output the value (D modulo 109 + 9), where D is the number of
occurrences of a double cross in the matrix.

As long as the conditions for the double cross pattern are satisfied, we do not care about the contents of the
surrounding cells. (In the above examples, the positions with dots can contain both ‘0’s and ‘1’s.)

If the same pattern occurs in multiple locations, or if there are multiple overlapping occurrences of the double
cross, all of these occurrences should be counted.

Input specification

The first line of the input contains two integers R and C: the number of rows and the number of columns
of the matrix. Rows are numbered 1 through R from top to bottom, columns 1 through C from left to right.

The second line contains a single integer N – the number of cells in the matrix that contain ‘0’s.
N lines follow. Each of these lines contains two integers ri and ci – the coordinates (row and column) of one

cell that contains a ‘0’. No two of these N cells are equal.

Constraints

The test cases are divided into several batches. For each of the batches, we give you the maximum values of
R, C, and N in the test cases that form the batch, and the number of points awarded for solving it.

points 10 5 5 15 15 20 5 5 5 15
R 10 10 100 100 2500 4000 400 400 400 100
C 10 10 100 6000 50 30 3000 3000 3000 10000
N 100 5 15 1000 200 1000 1 5 15 10000

Additionally, the first batch is very easy. In this batch, each test case has the property that all ‘1’s in the
matrix form a double cross pattern.

page 3 of 17 task: doublecross

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Output specification

Output a single line containing the value (D modulo 109 + 9), where D is the number of ways in which a
double cross pattern can be located in the matrix.

Example

input

6 8

12

1 2

1 3

1 4

1 6

2 2

3 2

3 3

3 4

3 7

6 4

6 6

4 8

output

5

This is the matrix described by the input:

10001011

10111111

10001101

11111110

11111111

11101011

All five valid double cross patterns are shown below.

....1...1...1...1...1...

...111.. ...111.. ...111.. ...111.. ..11111.

....1...1...1...1...1...

..11111. ..11111.1...1...1...

....1...1... ..11111. .1111111 .1111111

........1...1...1...1...

page 4 of 17 task: doublecross

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

The sequence jumps up and down

task: updown points: 100

The characteristics of an n-element integer sequence a1, . . . , an is a string S of length n− 1, where:

S[i] =

I ← ai < ai+1 (sequence increases)

C ← ai = ai+1 (sequence is constant)

D ← ai > ai+1 (sequence decreases)

For example, the characteristics of (3, 1, 1, 5, 6, 2) is DCIID.

Some sequences are boring. For example, the sequence (1, 5, 2, 7, 3, 6, 2, 8) is pretty boring, because it just
jumps up and down. This can be nicely seen from its characteristics: IDIDIDI.

We will now formally define which sequences are boring:
For a given sequence, its level of boringness (LoB) is the largest integer k such that its characteristics contains

two equal (possibly overlapping) substrings of length k.

For example, the sequence (1, 5, 2, 7, 3, 6, 2, 8) has LoB=5.

Task specification

Given k, produce the longest possible integer sequence with LoB strictly less than k.
Additionally, your sequence must use the fewest possible number of distinct values.
Partial credit will be awarded for sequences that only meet the first requirement.
The source code size for this problem must not exceed 10 000 characters.

Input specification

The only line of the input file contains the integer k (1 ≤ k ≤ 14).
All possible values of k will be used as test cases. Larger k are worth more points.

Output specification

Output your sequence, one element per row. Each element must fit into a signed 32-bit integer variable.

Example

input

2

output

1

2

3

3

3

2

47

2

1

The characteristics of this sequence is IICCDIDD.
Clearly, no substring of length 2 is repeated, so this sequence has LoB=1. However, this is not the longest

such sequence – this output would not receive any points.

page 5 of 17 task: updown

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Boringness of books

task: boringness points: 100

Now you know what boringness of sequence exactly means. On closer look we find out that the boringness
of many other things could be measured in this way – books, movies, music etc.

For example, the level of boringness of a book is the largest integer k such that its text contains two equal
substrings of length k. This definition is almost perfect, because nothing is so boring as reading the same text
twice.

Many libraries (including the one in Vyšná Boca) have decided to enhance their catalogues by the level of
boringnes of each book. Unfortunately, they discovered that it is quite hard to calculate the level quickly. So
they asks you for help.

Tasks specification

Your task is to write a program, which calulates the level of boringness of the given text as fast as possible.
You may assume, that the input text consists only of small letters of english alphabet.

Input specification

The first and only line of input contains the whole input text. The lenght of the text is always lower than
220.

Output specification

The only line of output contains one non-negative integer k, which is equal to the level of boringness of the
input text. It is the lenght of two longest equal substrings in the text which start on different positions. These
substrings may possibly overlap.

Example

input

mississippi

output

4

The substring ’issi’ is contained twice in the string
’mississippi’ and is the longest one. Its lenght is 4
letters. There exist no other same substrings which
would be longer.

page 6 of 17 task: boringness

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Revenge

task: revenge points: 100

Image that you met your dreamgirl and she asked for help with her programming class homework – a
program for searching the minimal spanning tree of the given graph. You shyly whispered that you would be
glad to help her. She gave you a big kiss and told you that you were the best guy all over the world. And later
that day you saw her with another guy in restaurant. . .

Now you feel miserable and angry and you plan a terrible revenge. But you don’t know which? It doesn’t
matter, we help you. Write her a program which instead of the smallest spanning tree finds the one which is
strictly greater than the smallest one but as small as possible. She surely won’t find this bug in the program
and your revenge will be finished.

Task specification

Write a program which for the given connected weighted graph finds the spanning tree which is strictly
greater than the smallest spanning tree but as small as possible. By the spanning tree of the graph G, we mean
such a subset of edges, so that graph G restricted only on these edges is still connected, but if we remove an
arbitrary further edge, it splits into two parts. Notice, that it implies that spanning tree has always N−1 edges.
The size of the spanning tree is the sum of sizes of its edges.

Input specification

On the first line of input, there are two integers N and (M 1 ≤ N ≤ 20 000, 1 ≤ M ≤ 100 000) where N
is the number of vertices and M is the number of edges in the graph G. In the following M lines of the input,
there are always 3 numbers a, b and ` (0 ≤ a, b ≤ N − 1, 0 ≤ ` ≤ 100 000) which describe one edge from vertex
a to vertex b of length `. The graph G is always connected.

For 80% of the input data it holds that N ≤ 2 000.

Output specification

The only line of the output contains the size of the spanning tree which is strictly greater than the smallest
spanning tree but as small as possible.

Example

input

9 13

1 7 3

2 7 2

7 8 5

7 5 2

6 7 1

5 6 3

4 6 2

3 4 7

3 6 5

7 3 4

8 6 4

0 2 1

0 3 8

output

20

page 7 of 17 task: revenge

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Triangles

task: triangles points: 100

Once there was a famous sailing ship contest called Sejly. Every year many experienced sailors competed
in it. For this year the annual 100th Sejly is planned and its organizers want to have more competing sailors
than ever. So they have decided to make billboards with a nice photo from the previous year to attract new
sailors. Unfortunately this year the price of green color has extremely increased and unfortunately it is also the
color of all the sails. So they need to count how much green color is needed for a single billboard and thence
also how many billboards they can afford. Fortunately the rules of the Sejly are very restrictive – all the sails
must be right-angled isosceles triangles. To make things easier you know that the coordinates of the vertices of
all the sails (triangles) are integers. So they ask you – the young promising programmers – to help them with
the problem. Your task is to compute the area of all the sails on the billboard.

Task specification

You are given a set of isosceles right-angled triangles with integer coordinates, having legs parallel to the
coordinate axis and hypotenuses going “from upper left to lower right” and you are to output area of their
union.

Input specification

On the first line there is a number n (1 ≤ n ≤ 10 000) – the number of triangles. Following n lines will
contain three space-separated integers x, y, d describing each triangle. A 3-tuple x, y, d corresponds to a
triangle ABC with the following coordinates: A = [x, y], B = [x + d, y], C = [x, y + d]. You may assume that
0 ≤ x, y, d ≤ 1 000 000.

Output specification

Output will consist of a single number u – the area of the union of given triangles. It should be printed with
exactly one digit after the decimal point. You may assume that u < 231.

Example

input

3

1 1 4

2 0 2

3 2 2

output

11.0

Corresponding picture is shown below.

page 8 of 17 task: triangles

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Stack calculator

task: calculator points: 100

Johnny has a weird calculator — a stack calculator. It consists of K memory cells (initially empty) numbered
from 1 to K and it supports the following operations:

”
1“ Writing the number 1 to the free cell with the lowest index. If there is no such cell, an exception is thrown.

”
+“ Reading two numbers from occupied memory cells with the highest indices, freeing these two cells and

writing their sum in the free cell with the lowest index. If there are less than two occupied memory cells,
an exception is thrown.

”
-“ Reading two numbers from occupied memory cells with the highest indices, freeing these two cells and

writing their difference (the cell with the second highest index minus the cell with the highest index) in
the free cell with the lowest index. If there are less than two occupied memory cells or if the result of this
operation is a negative number, an exception is thrown.

”
*“ Reading two numbers from occupied memory cells with the highest indices, freeing these two cells and

writing their product in the free cell with the lowest index. If there are less than two occupied memory
cells, an exception is thrown.

The calculator display always shows the number from the occupied cell with the highest number. If there is
no such cell, the display is empty.

Every operation takes precisely one second. Starting with an empty calculator, what is the minimum number
of seconds required to get the number N shown on the display?

Input

The first line of the input contains two natural numbers: N and K (1 ≤ N ≤ 109, 2 ≤ K ≤ 100).

Output

Print one integer — the minimal time required to get the number N shown on the display.

Example

input

6 3

output

9

One optimal solution: 111++11+*.

input

11 4

output

15

One optimal solution: 11+111++*11+*1-.

page 9 of 17 task: calculator

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Graffiti on the fence

task: fence points: 100

In Byteland there is a long fence, consisting of N planks numbered from 1 to N . The Byteland government
wants to have the fence painted. They hired M graffiti artists.

At the beginning, each artist is standing at one of the planks. Each artist can paint any plank he’s standing
at in b seconds, and walk to an adjacent plank in a seconds. An artist can also do nothing and just wait for
inspiration.

The government has some requirements. They want to buy as little paint as possible, so they want each
plank to be painted exactly once. They also want the entire fence done as soon as possible.

Task description

Given the length of the fence, starting positions of the artists and the values a and b, calculate the minimal
possible time in which the artists can complete their work.

Input

In the first line there are two integers: N and M (1 ≤ N, M ≤ 100 000). In the next line there are two
integers: a and b (1 ≤ a, b ≤ 106). In the last line there are M integers p1, p2, . . . , pM denoting the initial
positions of the graffiti artists (1 ≤ pi ≤ N).

Additionally, in test cases worth 40% of points we have M ≤ 2.

Output

Print one integer – the minimal time required to paint the entire fence.

Example

input

3 4

2 3

3 1 3 3

output

5

It is possible to paint the fence in 5 minutes if artist number 1 paints plank number 2, artist number 2 paints
plank number 1 and artist number 3 paints plank number 3. In this example, the fourth artist does nothing.

page 10 of 17 task: fence

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Permian garden

task: garden points: 100

The orangery “Permian garden” is a rectangular building in which Permian plants grow. The orangery used
to be divided into squares with paths. In the center of every square (and only there) there would grow exactly
one plant. The size of the square was dependent on the root system of the plant.

Over a year the paths were overgrown with grass, which made moving around the orangery considerably more
difficult. In order not to damage the roots of any plant during the gardening work, the size of its corresponding
square should be determined based on its location.

We shall introduce the Cartesian coordinate system, which beginning we shall bind to the left lower corner
of the orangery. The OX axis will coincide with the lower side of the building and the OY axis will coincide
with the left side. Originally the paths were parallel to the coordinate axes. The unit segment was picked so
that the corners of the squares have integer coordinates.

Task statement

Write a program that, given the size of the orangery and coordinates of the plants, will recover the squares
corresponding to the plants.

Input

In the first line of the input there are integers W – the width of the orangery, H – the height of the orangery
and N – the number of plants inside. (1 ≤ W, H ≤ 1012, 1 ≤ N ≤ 2 · 105) In the next N lines given are the
coordinates of the plants – two numbers xi, yi (0 < xi < W , 0 < yi < H).

Output

Print N integers – the lengths of the sides of the squares corresponding to consecutive plants from the input.

Example

input

4 6 3

1 1

3 1

2 4

output

2

2

4

input

8 8 10

4.5 7.5

5.5 7.5

2 6

4.5 6.5

7 7

5 5

6 2

7 5

2 2

5.5 6.5

output

1

1

4

1

2

2

4

2

4

1

The figure on the right shows the correct output for the second example.

page 11 of 17 task: garden

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Traffic jam

task: cars points: 100

Traffic jam is a real nightmare of all drivers. Nobody likes to be stuck in
the overfilled streets, when the cars move very slowly, if they even move at
all. Professional drivers face traffic jams quite often. Can you help them to
find the way out of the traffic jam?

We can model a small (but complicated) traffic jam on a 6 × 6 grid of
squares. Vehicles (cars and trucks) are scattered over the grid at integer
locations, as shown below. Both types of vehicles are 1 square wide. Cars
are 2 squares long, and trucks are 3 squares long. Vehicles may be oriented
either horizontally (East-West) or vertically (North-South) relative to the grid.

Vehicles cannot move through each other, cannot turn, and cannot move over the edge of the grid. They can
move in their direction (horizontally-oriented vehicles cannot move vertically and vice versa), as long as they
are not blocked by another vehicle or by the edge of the grid. Only one vehicle may move in a single step, but
it may move by as many squares at a time as possible, providing there is enough empty space.

Our goal is to move vehicles back and forth until a particular horizontally-oriented vehicle (your own car –
the black one on the picture above) leaves the rightmost (eastern-most) edge of the grid, where it is considered
to have escaped the traffic jam.

Task statement

You are to write a program that will find a solution requiring the minimum possible number of moves.

Input

On the first line there is a single integer n (1 ≤ n ≤ 10) giving the number of vehicles in the traffic jam.
The input continues with n lines, each of them containing a description of one vehicle. The first character of
the vehicle description is either h (meaning that the vehicle is oriented horizontally) or v (the vehicle is oriented
vertically). It is followed by a space and two integers r, c (1 ≤ r, c ≤ 6) separated by a space. The integers
specify the upper-left square occupied by the vehicle. Finally there is a space and either the character c or t

determining whether the vehicle is a car or a truck. The first vehicle in the description is the one that should
leave the grid and you can assume that it is a car and that it is oriented horizontally.

Output

The output should contain the minimal number of moves needed to move the first car out of grid over its
right end, or the string ’The car is trapped.’ in case it is not possible to move the first car out.

page 12 of 17 task: cars

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Examples

input

8

h 3 2 c

h 1 1 c

h 5 5 c

h 6 3 t

v 2 1 t

v 5 1 c

v 2 4 t

v 1 6 t

output

8

The input corresponds to the picture above.

input

3

h 1 1 c

v 1 6 t

v 4 6 t

output

The car is trapped.

page 13 of 17 task: cars

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Lemmings

task: lemmings points: 100

Lemmings is a very famous game. In this game,
your task is to guide a group of small suicidal crea-
tures with green hair. For this purpose, you may
force some of them to do a specific task like dig-
ging, blocking the way, building the stairs, and
several more. Writing a program to solve Lem-
mings is (provably!) a very hard problem – it is
very unlikely that a polynomial time solution ex-
ists. In this task you have to solve a much simpler
version of this game – the only two “skills” avail-
able will be the blocker and the nuke. (This is
explained below in more detail.)

At the start of the game (time t = 0), the
starting trapdoor opens and lemmings start falling out in 1 second intervals, for a total of L lemmings. All
lemmings are initially facing right. Your task is to guide as many lemmings as possible to the exit. The game
ends when there are no living lemmings inside the game (i.e., all lemmings are either dead or reached the exit).

Each level of our simplified lemmings game consists of:

• The starting trapdoor.

• Several horizontal platforms.

• An infinitely wide water at height y = 0.

• The exit.

For the purpose of our problem, the start, the exit and all lemmings are points. The exit is considered
reached as soon as a lemming comes within a very small distance ε of it.

A lemming stands on a platform iff it is located at (x, y) such that for some platform p we have y = py and
x ∈ [pstart, pend]. An alive and mobile lemming is either walking or falling at any moment – if it is standing
on a platform, it is walking, otherwise it is falling. Both movement types have a constant speed of 1 unit per
second.

Any walking lemming can be instantly converted into a blocker. This lemming remains standing at its current
location forever. Whenever another lemming reaches this location, its walking direction is reversed.

There are three ways for a lemming to die:

• If the lemming falls onto a platform from a distance larger than H, it is immediately smashed by the
impact.

• If the lemming falls into the water, it will immediately drown. Note that there can be a platform at y = 0,
in which case the lemming only drowns when dropping down from its end.

• At any moment during the game the user may nuke the level. This initiates a countdown sequence of
10 seconds. After the countdown terminates, all lemmings that did not reach the exit explode and die.
(Including lemmings that did not enter the level yet.) If the lemming reaches exit in the exact time of
detonation, it will be saved.

Note that nuking is necessary whenever you used at least one blocker, because without nuking the game
would never terminate.

Your task is to find the maximal number of lemmings that can be safely guided to the exit and the shortest
time needed to do so.

page 14 of 17 task: lemmings

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Input

The first line of input contains two integers L, H (1 ≤ L ≤ 109, 1 ≤ H ≤ 109) – the number of lemmings on
the start and the maximal safe falling distance. The second and third line both contains two space-separated
integers x (−109 ≤ x ≤ 109) and y (0 ≤ y ≤ 109) – the position of the start and the exit.

The fourth line contains an integer N (1 ≤ N ≤ 100 000) – the number of platforms. The next N lines will
describe platforms: the i + 4-th line contains three integers xstarti, xendi, yi (−109 ≤ xstarti < xendi < 109,
0 ≤ yi ≤ 109).

You may assume that

• no two platforms share a common point

• the start is not on any platform

• the lemming falling from the start does not land on a platform edge

• the exit is on one of the platforms

• the exit is not on a platform edge

Output

Output one line with two integers L′ and T – the number of lemmings that can be saved and the time
needed to do so. You should output integer T if the optimal time needed to end the level is within the interval
(T − ε, T + ε) for an arbitrarily small positive ε. If there are more possible solutions, print such that L′ if
maximal. If there are still more possibilities, minimize T .

Examples

input

1 1000

10 10

25 6

3

0 20 8

0 20 7

20 30 6

output

1 19

The only lemming will fall for 2 seconds, then walk to
the right for 10 + ε seconds. After this, it will start
falling, miss the second platform and land safely on
the third platform.
Ignoring the εs, the required time to complete the
level is 2 + 10 + 2 + 5 = 19 seconds.

input

3 1

10 9

35 5

4

0 20 8

0 20 6

20 30 7

20 40 5

output

1 31

Without blockers, the lemmings would fall from the
point (30 + ε, 7) and die. To save them, the player
needs to use two blockers. It is optimal to use them
at (20 + ε, 7) and (20− ε, 6). The third lemming will
then safely reach the exit.

page 15 of 17 task: lemmings

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Post

task: post points: 100

There are plans to improve the mail delivery system in Byteland; Instead of lots of old mail trucks a single
E-mobil will be introduced, which will be responsible for delivering mail to all post offices in Byteland;

The IT department of the city post has planned a cyclical route going through all post offices in the town.
All connections on it are unidirectional. A post office which will be the center of the system is yet to be picked
— all Byteland mail will go there before being delivered by the E-mobil. Because of traffic jams movement speed
on the roads between consecutive offices on E-mobil’s path depends on the current time. The center placement
is optimal if after the E-mobil’s departure at time zero it will deliver all the mail and come back to the center
in the lowest possible time. You may assume that the time needed for unpacking mail is negligibly small.

Task statement

You have to write a program that, given the E-mobil’s path and the schedule of speed limits will choose the
optimal mail delivery center placement and the minimum time in which E-mobil can return.

Input

In the first line of the input there is a natural number N (1 ≤ N ≤ 100 000)— the number of post offices in
Byteland. The offices are numbered according to their order on the E-mobil’s path, starting with 1. The next
N blocks of lines describe the N consecutive road segments between the offices. Each road segment is described
by three lines:

• In the first line there is a natural number di — the length of the given road segment (1 ≤ di ≤ 109), and
a nonnegative integer Ei — the number of time intervals in which speed on this segment is constant.

• In the second line there are positive integers ti, j (1 ≤ j < Ei, 0 < ti, j ≤ 109) — the time moments in
which the speed on the given road segment changes.

• In the third line there are positive integers vj — the speeds during the time intervals [ti, j−1, ti, j) where
1 ≤ j ≤ Ei. We assume that ti, 0 = 0 and ti, Ei

=∞.

You may assume that
∑

Ei ≤ 100 000.

Output

In the only line of the standard output you should print the index of the post office which should become
the mail delivery center and the minimum time for the E-mobil to make a full trip. The answer should have
relative or absolute precision of at least 10−5.

page 16 of 17 task: post

CPSPC 2011
Modra,

11. 5. – 17. 5. 2011

Examples

input

2

3 2

1

1 2

4 2

2

3 1

output

2 2.833333

input

2

2 1

2

2 1

2

output

1 2.000000

page 17 of 17 task: post

