
Parallelization of IIR Filters Using SIMD Extensions

Rade Kutil
University of Salzburg

Jakob Haringer-street 2, 5020 Salzburg, Austria
Phone: (43) 662 8044/6303, Fax: (43) 662 8044/172, E-mail: rkutil@cosy.sbg.ac.at

Keywords: SIMD, short vector, signal processing, IIR filter

Proc. IWSSIP, pages 65-68, Bratislava, June 2008, doi:10.1109/IWSSIP.2008.4604368

Abstract – The SIMD parallelization of IIR or recursive filters
is more difficult than that of FIR filters due to additional
data dependencies. While other methods concentrate on
appropriate scheduling to enable SIMD parallel execution,
this paper proposes a new method where data dependencies
are resolved by fusing the recursive application of filter taps
into single coefficients. In this way the overhead over perfect
parallelity can be reduced to one vector multiply-accumulate
operation. Speedups from 1.5 to 4.5 can be obtained with the
4-way SIMD Intel SSE extension, depending on the number
of filter taps.

1. INTRODUCTION

The parallelization of FIR filters has been investigated
thoroughly, especially for wavelet filters, for old SIMD
arrays [1], [2], [3] and SIMD extensions of modern general
purpose processors in the 1-D case [4], [5] and the 2-
D case [6], [7], [8]. The parallelization of IIR filters is
more difficult due to data dependencies. There are several
approaches including space-time transformations of loop
iterations [9], [10] and algebraic transformations [11].
The approach presented in this paper also uses algebraic
transformations, although different ones.

From a computational point of view, the difference be-
tween FIR and IIR filters lies in the dependencies between
loop iterations. Basically, there are two loops, one over
signal data and one over filter taps. In the FIR case,
iterations of the outer loop, i.e. entire inner loops, are
independent of each other, leading to a rather straight-
forward SIMD parallelization where the two loops (inner
and outer) are interchanged for a number of outer iterations
equal to the SIMD vector size p. See [4], [5] and Fig. 1(a).
In the IIR case, the dependencies are more complicated
since all previous output values are required to calculate a
new one. See Fig. 1(b). Therefore, SIMD parallelization is
more difficult.

This work presents a new approach where data depen-
dencies are resolved by fusing the recursive application of
filter taps into single coefficients. In this way it is possible
to reduce the overhead of vector operations to only one
vector multiply-accumulate operation, apart from several
necessary shuffle operations, if the number of filter taps is
not smaller than the SIMD parallelity.

All results in this work have been conducted on an Intel
Pentium 4 CPU with 3.2GHz and 2MB cache size using
the SSE extension with packed words of 4 single precision
numbers. All implementations use the same amount of
code optimization, i.e. memory access through incremented
pointers instead of indexed arrays, and compilation with

gcc 4.1.2 with the –O3 option. SIMD operations are imple-
mented using gcc’s built-in intrinsics for vector extensions
and the –msse option. Note that in order to have full control
over generated code, no automatic vectorization is applied.

The results are compared to hand-optimized code by
human experts, i.e. the Intel Integrated Performance Prim-
itives (IPP) v5.3, and are able to compete with and outper-
form it depending on the number of filter taps. Note that
the IPP library also uses SIMD operations, but the applied
methods are not known to the author.

2. SEQUENTIAL ALGORITHM

The goal of IIR filtering is to calculate the signal y from
the signal x by

yn =
N−1∑
i=0

aiyn−i +
M−1∑
i=1

bixn−i ,

where the second term is an FIR part with coefficients bi

and the first term is the IIR part with coefficients ai. M is
the number of FIR filter taps and N is the number of IIR
filter taps. The formula reveals the outer loop over n and
two inner loops over i.

The sequential implementation is optimized for perfor-
mance in order to allow a reasonable comparison to the
SIMD parallelized version. It turns out that maintaining a
pointer for yn and xn and addressing xn−i and yn−i via
relative addressing is fastest. Using extra buffers or local
register variables for reused values does not improve the
performance. Therefore, a similar implementation style is
adopted for the SIMD parallelization.

3. SIMD PARALLELIZATION OF THE FIR
PART

For SIMD parallelization, it is best when neighboring
data has to be processed independently because this leads to
a natural sequence of vector operations without the need to
combine elements of the same vector, which would involve
shuffle operations and incomplete vector operations. The
approach to interchange the inner and outer loop for as
many outer loop iterations as there are vector elements,
leads exactly to this situation and turns out to be near
optimal. See Fig. 1(a). The algorithm can be expressed by

u =
M−1∑
i=0

x(n−i,...,n−i+p−1) � (bi, . . . , bi) ,

http://dx.doi.org/10.1109/IWSSIP.2008.4604368

signal data

filter taps

(a) FIR case

signal data
filter taps

(b) IIR case

Fig. 1. Loop dependencies in filtering algorithm.

Fig. 2. Shuffle operations for all vector realignments on Intel architecture.

where � is the vectorized multiplication and p is the vector
size.

However, the input signal x has to be read in a non-
aligned way in this approach. This requires a shuffle
operation for each non-aligned read. Moreover, there are
architectures where not all shuffle operations are possible,
e.g. the Intel Pentium architecture. This special architecture
demands that the first two of four vector elements originate
from the first vector operand and the other two from the
second operand. Fig. 2 shows how all possible realignments
can nevertheless be implemented on this architecture with
one shuffle operation for each non-aligned read.

4. SIMD PARALLELIZATION OF THE IIR
PART

The IIR part can be parallelized in just the same way for
those iteration where i ≥ p, i.e. where the source vector
y(n−i,...,n−i+p−1) does not overlap with the destination
vector y(n,...,n+p−1) that is being calculated. The iterations
i = 0, . . . , p − 1 might be implemented sequentially after
computing the others in a vectorized way first by

v = u ⊕
N−1∑
i=p

y(n−i,...,n−i+p−1) � (ai, . . . , ai) ,

followed by

yn+k = vk +
p−1∑
i=1

aiyn+k−i for k = 0, . . . , p− 1.

A first attempt to parallelize the latter part is to split
it into two phases. The first phase treats those terms that
reference yn+k−i where n + k− i < n, i.e. values that are

already available.

for i = 1, . . . , p− 1 :
v ← v ⊕ (yn−p+i, . . . , yn−1, 0, . . .)�

(ap−i, . . . , ap−i, 0, . . .)

The second phase uses those elements of v that already
represent yn+k values. At the beginning, only v0 = yn.
So, v0ai can be added to vi for i = 1, . . . , p − 1. After
that v1 = yn +1. Repeating this for v2, v3, . . ., leads to the
following algorithm:

for k = 0, . . . , p− 2 :
v ← v ⊕ (. . . , 0, vk, . . . , vk)� (. . . , 0, a1, . . . , ap−1−k)

y(n,...,n+p−1) ← v

This first approach yields an overhead of p − 1 multiply-
accumulate vector operations, since each phase has p − 1
iterations, resulting in 2(p−1) operations, where only p−1
would be necessary if there were no problems with data
dependencies.

Now, we will develop the novel approach that fuses
filter taps to resolve data dependencies. Let us look at
the second iteration (k = 1) of the last algorithm. Here,
v1 = yn+1 = v′1+v0a1, where v′ comes from the preceding
iteration. Now, we calculate the new v2 as v2 + v1a1,
which can consequently be expressed as v2 + v′1a1 + v0a

2
1.

Moreover, v2 = v′2+v0a2, as calculated in the first iteration.
Altogether, we get v′1a1+v0(a2

1+a2). The term v′1a1 could
be calculated in the last iteration of the first phase, and the
term v0(a2

1 + a2) can be calculated in the first iteration of
the second phase because we have eliminated v1 from the
term.

Following this approach even further recursively, we get
the following algorithm that substitutes both phases.

for i = 1, . . . , p :
v ← v ⊕ (yn−p+i, . . . , yn−1, 0, vp−i, . . . , vp−i)� s(i)

y(n,...,n+p−1) ← v

s(i) holds the fused filter tap coefficients and has the

following form:

s(1) = (ap−1, . . . , ap−1, 0)
s(2) = (ap−2, . . . , ap−2, 0, c1)
. . .

s(p− 1) = (a1, 0, c1, c2, . . . , cp−2)
s(p) = (0, c1, c2, . . . , cp−1) ,

where

ck =
k∑

i=1

akck−i, c0 = 1 .

This approach finally has an overhead of only one multiply-
accumulate vector operation, since it has p iterations. For
better comprehensibility, let us write the algorithm or the
case of p = 4 as in the Intel SSE architecture:

v ← v ⊕ (yn−3, yn−2, yn−1, 0)� (a3, a3, a3, 0)
v ← v ⊕ (yn−2, yn−1, 0, v2)� (a2, a2, 0, a1)
v ← v ⊕ (yn−1, 0, v1, v1)� (a1, 0, a1, a

2
1 + a2)

v ← v ⊕ (0, v0, v0, v0)� (0, a1, a
2
1 + a2, a

3
1 + 2a1a2 + a3)

y(n,...,n+3) ← v

Of course, each of these multiply-accumulate operations
requires at least one shuffle operation, maybe two on the
Intel SSE architecture.

If the number of IIR-taps N is smaller than the vector
size p, the above approach unfortunately only reduces to
p − 1 operations. In this case, some divide-and-conquer
algorithm might further reduce the overhead. However,
dlog2(p + 1)e seems to be the lower bound, since yn+p−1

depends on the p+1 values u0, . . . , up−1, yn−1 if N takes
the minimal value 2.

5. PERFORMANCE

In [4], [5], it turned out that the performance of an
implementation of a filtering algorithm possibly depends on
whether the signal data is in the cache or not. The method
to find this out is to vary the data length and to repeat
the filtering several times. If the data is short, then it will
remain in the cache, otherwise it will not. This approach
is also adopted here.

The calculation time is expected to depend linearly on
the data size and on the number of filter taps N + M .
Therefore, we calculate the execution time per sample point
and filter tap from the total execution time of the algorithm
by ttotal/S/(N + M), where S is the data size.

Fig. 3 shows the results for N = M = 2 and N = M =
10. It also includes performance measures of the Intel IPP
library. While the IPP library code seems to depend a little
on the data size, the major reason for this seems to be
startup-overhead when filling the delay-lines, which is sig-
nificant only for small data sizes. The sequential algorithm
and the SIMD algorithm are completely independent of the
cache state.

For small numbers of taps, the IPP library code seems to
be faster. This is also shown in Fig. 4. For N = M ≤ 5, the
SIMD algorithm cannot compete with the IPP code. The

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 1000 10000 100000 1e+06

sequential
SSE

Intel IPP

(a) 2 taps

 0

 0.5

 1

 1.5

 2

 100 1000 10000 100000 1e+06

sequential
SSE

Intel IPP

(b) 10 taps

Fig. 3. Execution time in ns per sample point and filter tap depending
on the data length for repeated filtering, showing the cache dependency
of the algorithms.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 50 40 30 20 10 5 4 3 2

sequential
SSE

Intel IPP

Fig. 4. Execution time in ns per sample point and filter tap depending
on the number of filter taps.

reason is probably that hand-optimizing assembler code, as
in the IPP library, is more important for short loops. For
N > 5, however, the new SIMD approach outperforms the
IPP library by a speedup of about 1.7 and also shows more
regular behavior. Compared to the sequential algorithm,
speedups from 1.5 for small N to 4.5 for large N are
obtained.

6. CONCLUSION

A successful approach for FIR filtering on SIMD archi-
tectures is based on the interchange of the inner loop over
filter taps and the outer loop over the signal data. If this
is done on a number of outer iterations that is equal to
the vector size p, a convenient SIMD algorithm can be
generated easily.

In the IIR case, additional data dependencies disturb this
scheme. However, it has been shown that the scheme can be
left unchanged for all but the first p filter taps if the order
of filter tap application is reversed. For those taps, coeffi-
cients can be fused in order to resolve data dependencies.
This algebraic transformation manages to limit the parallel
overhead to one vector multiply-accumulate operation.

The approach yields speedups of 1.5 to 4.5 compared to
the sequential version on an Intel Pentium SSE processor.
The fact that the speedups exceed p = 4 is probably due
to improved cache usage. It even outperforms the hand-
optimized code of the Intel IPP library by a speedup of
about 1.7 if the number of filter taps is 6 or higher.

ACKNOWLEDGMENTS

The author wants to thank Robert Resch, Wolfgang Kreil
and Armin Langhofer for co-developing and testing first
special versions of the approach, showing that the approach
is feasible.

REFERENCES

[1] M.M. Pic, H. Essafi, and D. Juvin. Wavelet transform
on parallel SIMD architectures. In F.O. Huck and
R.D. Juday, editors, Visual Information Processing II,
volume 1961 of SPIE Proceedings, pages 316–323.
SPIE, August 1993.

[2] C. Chakrabarti and M. Vishvanath. Efficient realiza-
tions of the discrete and continuous wavelet trans-
forms: From single chip implementations to mappings
on SIMD array computers. IEEE Transactions on
Signal Processing, 3(43):759–771, 1995.

[3] M. Feil and A. Uhl. Wavelet packet decomposition
and best basis selection on massively parallel SIMD
arrays. In Proceedings of the International Confer-
ence “Wavelets and Multiscale Methods” (IWC’98),
Tangier, 1998. INRIA, Rocquencourt, April 1998. 4
pages.

[4] R. Kutil, P. Eder, and M. Watzl. SIMD parallelization
of common wavelet filters. In Parallel Numerics ’05,
pages 141–149, Portorož, Slovenia, April 2005.

[5] R. Kutil and P. Eder. Parallelization of wavelet filters
using SIMD extensions. Parallel Processing Letters,
16(3):335–349, September 2006.

[6] R. Kutil. A single-loop approach to SIMD paralleliza-
tion of 2-D wavelet lifting. In Proceedings of the
14th Euromicro Conference on Parallel, Distributed
and Network-based Processing (PDP), pages 413–
420, Montbeliard-Sochaux, France, February 2006.

[7] C. Tenllado, D. Chaver, L. Piñuel, M. Prieto, and
F. Tirado. Vectorization of the 2D wavelet lift-
ing transform using SIMD extensions. In Work-
shop on Parallel and Distributed Image Processing,
Video Processing, and Multimedia, PDIVM ’03, Nice,
France, April 2003.

[8] D. Chaver, C. Tenllado, L. Piñuel, M. Prieto, and
F. Tirado. 2-D wavelet transform enhancement on
general-purpose microprocessors: Memory hierarchy
and SIMD parallelism exploitation. In Proceedings
of the 2000 International Conference on High Perfor-
mance Computing, Bangalore, India, December 2002.

[9] R. Schaffer, M. Hosemann, R. Merker, and G. Fet-
tweis. Recursive filtering on SIMD architectures.
In Proceedings of the IEEE Workshop on Signal
Processing Systems 2003 (SIPS 2003), pages 263–
268, August 2003.

[10] M. Hosemann and G. Fettweis. On enhancing SIMD-
controlled DSPs for performing recursive filtering.
Journal of VLSI signal processing, 43(2–3):125–142,
June 2006.

[11] J. Robelly, G. Cichon, H. Seidel, and G. Fettweis.
Implementation of recursive digital filters into vector
SIMD DSP architectures. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and
Signal Processing 2004 (ICASSP ’04), volume 5,
pages 165–168, May 2004.

	1 Introduction
	2 Sequential Algorithm
	3 SIMD parallelization of the FIR part
	4 SIMD parallelization of the IIR part
	5 Performance
	6 Conclusion

