
Navigation in RDF data

Jiřı́ Dokulil, Jana Katreniaková
Faculty of Mathematics and Physics,Charles University, Prague, Czech Republic

Faculty of Mathematics, Physics and Informatics, ComeniusUniversity, Bratislava, Slovakia
jiri.dokulil@mff.cuni.cz, katreniakova@dsc.fmph.uniba.sk

Abstract
There are already several tools available that are capa-

ble of visualizing RDF data. The problem with RDF data
is that they tend to be very large. To handle the data, the vi-
sualizers cannot display the whole data but rather need to
use some kind of navigation. This paper describes our ap-
proach to the navigation, which was designed specifically
with the preservation of the user’s mental map in mind. We
also compare our approach to the other visualizers.

1 Introduction
The Semantic web [1] idea is already well established,

as well as some of the standards that accompany it. One
of those standards is the RDF [2] data format which is in-
tended to be the low-level format for semantic data. By
their very nature, the RDF data for an oriented, labeled
graph. This may be used to fight one problem – the RDF
data often tend to be large, complex and hard to read and
explore when serialized to some text-based format (espe-
cially in the case of RDF-XML). If we present the data
visually, we may be able to give the user much better idea
about what is in the data. But to handle data that may con-
tain millions or more of nodes and edges, the visualization
itself is not sufficient and some kind of navigation is nec-
essary.

The Section 2 gives a brief overview of our approach to
drawing subgraphs of the whole data. The key part of this
paper is the Section 3 which explains the way we let the
user navigate the data. Section 4 explores other approaches
to navigation in RDF data.

2 Visualization of RDF data
To present the RDF visually, we can not use visualiza-

tion alone. The graph is too big, containing millions of
nodes and edges. Although there are visualizations han-
dling data that big, their purpose is to only somehow sug-
gest the overall structure of the data – an example are vi-
sualizations of web page relations or large social networks.
But we need a detailed display showing individual nodes
and their connections.

For this reason, we use navigation in our RDF visual-
izer. But for any navigation, we need visualization first.
But in turn, we make use of the navigation for the visu-
alization. Because the user navigates the data by adding
connected nodes to the already visible part of the graph, it
creates a rooted tree (that we call anavigation tree). And
our visualization is based on drawing of that tree.

One aspect, important for both visualization and navi-
gation, is the way we draw the nodes. They are drawn as
rectangles. The content of the rectangle is label of the node
and list (possibly incomplete if they are too numerous) of
incoming and outgoing edges. This is callednode merging
and affects the visualization by forcing the nodes to have
variable height (the number of edges varies) and width (the
length of the edge labels varies).

We use layered drawing to draw the navigation tree.
This means that all nodes that have the same distance from
the root are displayed on the same layer. The layers in
our case are lines connecting(0, r(L)) and(r(L), 0) and
nodes are placed with their lower left corner on the line.
The valuer(L) is calledradiusof the layerL.

The visualization algorithm always starts by placing the
root of the navigation tree to the coordinate origin. Then
all children of the root are positioned on the first layer. The
radius of the layer is made big enough for all the children
to fit onto the layer without overlapping each other and also
big enough to be beyond the rectangle representing the root
node. The children are placed evenly along the layer.

The process is nearly the same for further layers, except
there is so calledangle of influenceα. Each node in the tree
is assigned an angle of influence and it is an angle where
all descendants (not only children) must fit.



Figure 1: Example of triangle layout

Do note that the node itself need not be within its angle
of influence. Angle of influence of all nodes is a part of an-
gle of influence of their respective parents. Each node gets
part of the angle proportional to the number of nodes of the
tree rooted in that node. For details of the distribution see
[4]. The purpose of the angle of influence is to make paths
from root to leaves follow a certain direction (they should
not zig-zag too much). The limited angle may force us to
increase radius of a layer so that the children fit into the
angle (if the angle is constant and the radius increases the
actual space available to the nodes increases).

After all nodes are placed, the edges are drawn be-
tween them. There are two types of edges – tree edges
and non-tree edges. The tree edges can be drawn as sim-
ple straight lines connecting the nodes, because they only
connect nodes on adjacent layers and furthermore the chil-
dren are in similar position on their layer as is the parent on
the previous layer (thanks to the angle of influence). The
non-tree edges are more complex as they can connect very
distant nodes. We draw them by starting with a straight
line and adding bends to the line so that it avoids all nodes
in its path. Details are described in [5].
An example of visualized RDF data is shown in Figure 1.

3 Navigation
We need to provide the user not only with well-arranged

drawing of the graph but also with means to alter the view
of graph to match his or her needs. As the basic opera-
tion, we decided to allow the user to extend the view by
adding a neighbor of an already displayed node. This way
we get the navigation tree, which is the main structure we
visualize. Beside this operation we also enable the user to
reduce the view by a single node or some connected sub-
tree. The user can decide that the current view of the graph
is no longer interesting but he or she still wants to continue
with the navigation. For this purpose we proposed support

view restructuring operations.
In all these operations we preserve the mental map of

the user as much as possible. The mental map preservation,
i.e. the stability of the layouts, is a key issue in dynamic
graph drawing. The quality of the layout can be evaluated
by measuring the movement of the nodes between succes-
sive layouts. The movement should be small, especially in
the areas of the graph unchanged by the navigation.

In [7] authors identified some ”general factors” that con-
tribute to the mental map preservation.

Predictability – the aim is to make the jump from one
view to the next one predictable.

Degree of change – the jump itself should be minimized
as well. The new view should preserve the node co-
ordinates as much as possible. In a strict model, all
nodes not involved in the modification of the view
have to preserve their relative order in both coordi-
nates.

Traceability – the user should be able to notice the
changes as they take place, so that they can be in-
tegrated in his or hers mental map. This is usually
achieved via animation. However, not every anima-
tion gives good support for the mental map preser-
vation. In [8] the criteria for a good animation were
sketched. In our animations we fulfill these criteria
to get easily traceable animation process. Note that
only the navigation tree is animated, since the non-
tree edges may completely change their position and
may lead to too complex animation, which makes
the whole transition less comprehensible to the user.

3.1 View expansion
Let G = (V, E) be the currently displayed graph and

T = (V, E′) the navigation tree. ThenE′ ⊆ E holds. The
user selected nodev ∈ V with a set of neighborsN(v). If
N(v) ⊆ V then all neighbors ofv are already displayed



andv can not be used for further navigation. In the other
case, letN ′(v) = N(v) \ V be the set of yet undisplayed
neighbors ofv and letu ∈ N ′(v). Then we can extend the
displayed graph and navigation tree like this:

• The set of nodes is extended by the nodeu.

• The set of edges is extended by all edges betweenu

and the already displayed nodes.

• The edge(u, v) is added to the navigation tree.

Drawing of the new view can be done in several differ-
ent ways. The most simple one is to completely redraw the
whole graph. This way we use the least space to draw the
new view.

However, we enhance the mental map preservation, if
we do not redraw the whole graph. Sometimes, only
small (or even no) change of displayed nodes coordinates
is enough. This occurs for example if a node fits into the
angle of influence of its predecessor. In this case we can
only insert the node.

Therefore, we use the algorithmUpdateInsert instead
of redrawing the whole tree. We suppose that the nodevk

is inserted andrT = v0, v1 . . . vk is the path from the root
of the navigation tree to the nodevk.

How deep we need to recompute the coordinates in the
navigation tree? We get the answer from the function
Insert. The main idea is following: If a child can not
fit into the parent’s angle of influence, it may be possible,
that he has too many children and too little space. So it
may ask one of its predecessors (first its direct predecessor
and then further towards the root) to recompute their an-
gles of influence according to actual situation. To achieve
a correct distribution of angles of influence, the first son of
each node gets the whole angle and every further son gets
zero angle of influence. This is of course recomputed in
the case that he gets a new descendant.

INSERT(vk)
1 i← k

2 while i > 0
3 do if vk fits into angle of influence ofvk−1

4 then if vk is first ancestor

5 then α(vk) = α(vk−1) // gets whole angle
6 else α(vk) = 0 // gets zero angle
7 return (i, vi)
8 else redistribute angles of influence inT (vi−1)
9 i← i− 1

10 return (1, rT )

After we know that only subtreeT (v) will be influenced
we recompute the coordinates (the angleγ) in this subtree
(using functionRecompute). It is possible, that the radii
of some layers are affected too (they may increase). The
coordinates of nodes outside the subtreeT (v) are not re-

computed, they are only shifted further from the root (if
their layer radius was increased).

RECOMPUTE(j, T )
1 for each h in {j, j + 1, . . .}
2 do COMPUTE(rh)
3 for each v in L(h− 1) ∩ T

4 do // v has childrenv1 . . . vk

5 for i = 1 to k

6 do COMPUTE(α(vi))
7 COMPUTE(γ(vi))

The functionUpdateInsert, that utilizes the previ-
ous functions, can be drafted as follows. Note, that al-
though we recompute coordinates of all nodes on layers
l . . . max layers they only shift away from the root (γ(v)
is unchanged).

UPDATEINSERT(vk)
1 (l, v)← Insert(vk)
2 Recompute(l, T (v))
3 for j = l to max layers

4 do for each v in L(j)

5 do y(v)← rj ·
sin γ(v)

sin γ(v)+cos γ(v)

6 x(v)← rj − y(v)

Example At the beginning the tree consists of only a root
rT . Then we add a nodev1, which is the first son of the
root. So the situation is the following:

Both the root and its son get the whole angle〈0, 90〉 as
their angle of influence. Now, we add a second sonv2 to
the root. As written before, the second son gets zero angle
of influence. After this step, the first sonv1 still has the
whole layer as its angle of influence.

Now the second son gets a childu. It can be easily seen that
it can not fit into the zero angle of influence. So the angles
of influence have to be recomputed. The treeT (v1) rooted
in v1 has only one element and the treeT (v2) rooted inv2

has two nodes. According to the distribution function, the
angle of influence of the root is divided to its children in



proportion to the size of the trees rooted in them. So the
nodev1 gets one third of the layer and the nodev2 gets the
rest.

Now, the nodeu fits into the angle of influence of its father.
Should this not be the case, the whole tree would have be
recomputed with new layer radii.

Animation In [8] authors drafted four steps of a good
animation process. The animation of the expansion of the
navigation tree is divided into two steps (steps 3 an 4 of the
suggested process):

1. The linear transition stage – is for easier comprehen-
sion divided into two parts

(a) Increasing radii of all layers, which were af-
fected by the expansion (we do this first, since
the nodes may not fit into the smaller lay-
ers). This step is only ’scaling’ of the image.
All nodes are moved along the line connecting
them to the coordinates origin away from the
root.

(b) Now, the nodes of the treeT (v) (contained in
the previous view) are moved along the layers
they are positioned on.

2. Show newly added elements (the new nodevk and
the edge to its predecessor).

3.2 View reduction
It is possible that the user will consider some subtrees of

the navigation tree to be no longer interesting. For this rea-
son we allow the view to be reduced by removing a node
or a whole subtree.

Let G = (V, E) be the currently displayed graph and
T = (V, E′) the navigation tree. If the user selects the
nodev ∈ V , we reduce the displayed graph and the navi-
gation tree by removing the subtreeT (v) = (Vv, Ev) – the
subtree rooted inv – like this:

• The set of nodes is reduced by the setVv.
• The set of edges is reduced by all edges connecting

Vv and other displayed nodes.
• The edges fromEv and the edge betweenv and its

predecessor (vpred) is removed from the navigation
tree.

Like in the case of the view expansion, there is the pos-
sibility to completely redraw the graph or to only do some

update. As theUpdateInsert algorithm can also use the
space released by removing some nodes, we use a very
easy alternative, where the nodes that remain displayed re-
tain their original coordinates. Even though the graph is
not redrawn, we get some free space. There are two possi-
bilities, how to manage this free space:

• Completely ignore the free space and wait for
InsertUpdate to manage it.

• Distribute the free space (according to the distribu-
tion function) among the neighboring siblings of the
removed node (as you can see in Fig. 2(c)). The
space can be directly used for new children of this
siblings.

Animation In the case of view reduction, the animation
is unnecessary, since all nodes retain their coordinates.

3.3 Restructuring the view
While navigating the graph, the user can decide that the

current view of the graph is no longer interesting but he or
she still wants to continue with the navigation. In that case
we allow the user to create a new view of the graph using
one of this options:

• Selection of new origin (see case (b)) keeps all dis-
played nodes. Only the navigation tree is altered by
selecting different node as the root of the tree.

• Preservation of path to a selected node (see case
(c)) removes all displayed nodes except for the path
from the root to the selected node. The selected node
is the new root of the navigation tree.

• Preservation of node (see case (d)) is the most ex-
treme change of the view. Only the selected node is
retained (of course in the form of merged node) and
it is set as a new root of the navigation tree.

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

a b c d

Animation Just like view expansion and reduction, the
view restructuring operations are animated. If the users
wants to preserve only one node, all other nodes and edges
vanish and the remaining node moves to the origin of the
coordinate system.

When the whole path is preserved, all nodes and edges
outside the path vanish, the path rotates around its center.
Then all nodes and edges move to their target locations.



(a) Before reduction (b) Redrawing (c) Lazy reduction (distr. of the free space)

Figure 2: View reduction

The selection of a new origin is the most complex case.
All of the nodes and edges of the graph are preserved and
all of them have to be moved to new locations. This anima-
tion is split into several steps, where in each step the nodes
move only to neighboring layers.

To make each step easy to follow and preserve the user’s
mental map as much as possible, we would like to preserve
order of the nodes within a layer. To be more exact, for
every pair of nodesu andv, if the path from the nodeu to
the root is above or below the path fromv to the root be-
fore a step of the animation, then they must have the same
relative position after the step. If the paths have a common
part they are considered to be both above and below each
other and their actual relative position is determined by the
disjoint parts of the paths if there are any. If there are no
disjoint nodes the paths are considered to be both above
and below each other (this occurs ifu is a descendant ofv
or v a descendant ofu) and their position after the step can
be either of the two.

If we maintain this condition, the user’s mental map
should be relatively well preserved and, furthermore, the
moving nodes would not extensively cross each other.

In each step, letr1 be the current root of the tree,r2 the
node user selected as the new root,P path fromr2 to r1

minusr1, andp ∈ P a child ofr1 (p is the node ofP that
is closest to the root). For a nodev we denoteT (v) to be
the tree rooted inv.

One step of the animation consist of simple linear trans-
lation of nodes. But there is one operation that is similar to
rotation known from e.g. AVL-trees. It is the transforma-
tion of the root and its children which can be performed in
two directions. The direction is chosen at the start of view
restructuring and does not change between the steps. The
direction is based on the position ofr2 – if the center ofr2

is above the line going in the angle of 45 degrees from the
coordinate origin the rotations is done counter clockwise.
If the node is below the line, it is clockwise. The following
text describes the counter-clockwise variant.

All nodes fromT (p) are moved one level closer to the
root, makingp the new root of the tree. Ther1 node is
moved one layer in the opposite direction (makingr1 a

child of p – rotating them), along with all of its children
that were position belowp. The trees rooted in these chil-
dren are moved as well. Ther1 node and the children are
placed belowP , thus preserving the order of nodes within
layers as was defined earlier.

There is a problem with children ofr1 (and subtrees
rooted in those nodes) that were above the nodep. If we
wanted to preserve order of nodes on each layer, then those
nodes have to be aboveP . But they are descendants ofr1,
which was moved belowP , and so all of its descendants
must be belowP because tree edges never cross. This is a
contradiction and so the order of the nodes cannot be main-
tained when our algorithm is used. It is relatively easy to
find an example which demonstrates that for some graphs,
the condition cannot be maintained by any algorithm.

This means we have to violate the condition in some
way, which would very likely result in some nodes cross-
ing other nodes during the animation. But we still may
maintain the condition to certain degree – to make it hold
at least for the descendants of the root and subtrees rooted
in the descendants. This way the mental map of the user is
at least partially preserved. As for the crossings we have
two options. We can either completely avoid them or try
to minimize their impact. We came up with several ways
of avoiding the crossings but they all result in an animation
that is too complex and hard to follow.

For this reason, we decided to simply swap the positions
of the problematic nodes and theT (p) using the basic lin-
ear animation, which inevitably results in one nodes cross-
ing the others on their way. A slightly more sophisticated
animation could avoid that – by increasing radii of the lay-
ers we can make sure nodes from one group pass through
spaces between the nodes of the other group. But again, the
resulting animation would be too complex and not fluent,
making the very basic linear animation a better choice.

Still, there is something that can be done to make the
swapping of the nodes look better. The idea is to use the
z-axis as well, by making one set of nodes appear to get
closer to the user and the other farther from user. Unfor-
tunately, there is no easy way to achieve this in current
SDL-based implementation which is one of the reasons the



visualizer is being rewritten for the WPF.

4 Existing approaches to visual navigation in
RDF

Since RDF data have been around for quite some time,
there are already several tools that try to visualize it. Many
of them display the whole graph, which is not suitable for
large data because it requires too much resources and the
resulting view is not clear. The visual navigation is impos-
sible in this case. However, there are still some other tools
that also allow the visual navigation in the RDF data.

• Node-centric RDF Graph Visualization [10] is
one of the few tools that do not try to display the
RDF graph precisely. According to the user’s choice,
it always displays tree of node’s ancestors and de-
scendants. If any of them can be reached by more
than one path (which would create a non-tree edge
in our solution) the node is displayed multiple times
(once for each path) which preserves the tree struc-
ture of descendants and ancestors. One disadvantage
of this tool is that it only displays two levels of an-
cestors and descendants and does not try to handle
nodes with high degree.

• Paged Graph Visualization (PGV) [3] is similar
to our tool because it does not try to display the
whole graph. Incremental algorithm is used to lay-
out the explored sub-graphs. However, the expan-
sion of the view is the only navigation operation in
the PGV explorer. Moreover, the expansion extends
the view by all neighbors of selected node. It can be
problem mainly with nodes that have high degree.
Even though authors claim that the Ferris-Wheel
technique handles high-degree nodes (but only with
nodes having at most hundreds of neighbors) the ex-
pansion of all neighbors of such node is too space
consuming, especially if no reduction of the view is
allowed.

• IsaVis [9] is a visual environment for browsing
and authoring RDF models, represented as directed
graphs. The graph is visualized once and can be
explored using cameras that can be moved and
zoomed. The user can not reduce or modify the view
and can only browse the whole graph. If the graph
is too big even the zooming may not lead to easily
readable view.

Despite significant diversity of available visualization
tools for RDF data (for more details about visualization
tools see [4] ), only a few of them can be used to visualize
large data. None of the tools uses technique similar to node
merging and all of them run into trouble when the data con-
tain nodes with very high degree although such nodes can

commonly be found in the real world data. In most of the
systems, the navigation in the graph is not enabled or is
limited to browsing through the whole displayed graph.

5 Conclusions
For our RDF visualizer, we have developed navigation

techniques that we believe are as much user-friendly as
possible. We extensively use animations to help us with
this. We have created a working implementation using the
Trisolda semantic web infrastructure [6].

In the future, we would like to study the problem of non-
tree edge animation in greater detail. Although in general
the animation would be impossible for the user to follow,
if the change was small enough, it might be helpful.

References
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Se-

mantic Web.Scientific American, May 2001.

[2] J. J. Carroll and G. Klyne. Resource Description
Framework: Concepts and Abstract Syntax. W3C
Recommendation, 2004.

[3] L. Deligiannidis, K. J. Kochut and A. P. Sheth. RDF
data exploration and visualization.CIMS ’07: Pro-
ceedings of the ACM first workshop on CyberInfras-
tructure, 39–46, ACM, New York, 2007.

[4] J. Dokulil and J. Katreniaková. Visual Exploration
of RDF Data.In: SOFSEM 2008: Theory and Prac-
tice of Computer Science, 672–683 Springer Berlin /
Heidelberg, 2008.

[5] J. Dokulil and J. Katreniaková. Drawing of edges
in RDF visualization. Technical report, Faculty
of Mathematics, Physics and Informatics, Comenius
University, Bratislava, 2008.

[6] J. Dokulil, J. Tykal, J. Yaghob, and F. Zavoral. Se-
mantic web infrastructure. InFirst IEEE Interna-
tional Conference on Semantic Computing, 209–215,
Los Alamitos, California, 2007. IEEE Computer So-
ciety.

[7] M. Freire and P. Rodrı́guez. Preserving the mental
map in interactive graph interfaces. InProceedings
of Advanced Visual Interfaces (AVI 2006), 2006.

[8] C. Friedrich and P. Eades. Graph Drawing in Mo-
tion. Journal of Graph Algorithms and Applications,
6(3):353–370, 2002.

[9] E. Pietriga. IsaViz: a Visual Environment for Brows-
ing and Authoring RDF Models.WWW 2002, the
11th World Wide Web Conference, Honolulu, USA,
May 2002. http://www.w3.org/2001/11/IsaViz/.



[10] C. Sayers. Node-centric RDF Graph Visualization.
Technical report HPL-2004-60, HP Laboratories Palo

Alto, April 2004.


