
Department of Computer Science
Faculty of Mathematics, Physics and

Informatics
Comenius University, Bratislava

Presentation of the Content Structure

for E-learning

Written Part of Dissertation Exam
Project of Dissertation Thesis

Mgr. Jana Katreniaková

Supervisor: Prof. RNDr. Branislav Rovan, PhD.

Bratislava, 2006

Thanks to my supervisor Prof. Branislav Rovan, PhD. for his support
and interest in this work. Finally I would like to thank my husband for his
support and encouragement in my research.

Contents

1 Introduction 1

2 Motivation 3
2.1 E-learning . 3
2.2 Organizational Memory . 4

3 Content Structure 6
3.1 Objects of Content Structure 6
3.2 Process of Content Development 7
3.3 Model of Content Structure 8
3.4 Requirements for Storing and Visualizing 9

4 Storing and Visualizing 10
4.1 Storing of Content . 10

4.1.1 Related XML Standards 10
4.2 Visualizing Content Structure 12

5 Drawing of Content Graph 14
5.1 Approaches in Graph Drawing 15

5.1.1 Topology-Shape-Metrics Approach 15
5.1.2 Hierarchical Approach 16
5.1.3 Visibility Approach . 18
5.1.4 Augmentation Approach 19
5.1.5 Force-Directed Approach 19
5.1.6 Divide and Conquer Approach 19
5.1.7 Incremental Drawing of Graphs 20

5.2 Attributes of Content Structure Graph 20
5.3 Hierarchically Structured Graphs 23

5.3.1 Drawings of Compound Graphs 24
5.3.2 Drawings of Clustered Graphs 24

iv

CONTENTS v

5.3.3 Visualizing of Hierarchically Structured Graphs 26

6 Existing Solutions 28
6.1 Learning Management Systems 28
6.2 Personal Information Management Systems 29
6.3 Web-based Solutions . 29

7 Conclusion 31

8 Project of Dissertation Thesis 33

Bibliogaphy 35

Chapter 1

Introduction

In many fields is nowadays problem with lot of information, which need to
be stored. There are areas, where another problem appears. The stored
information has to be presented to other people. One of such fields, where
these problems arise is e-learning. Nowadays the importance of e-learning
is increasing, since it has many advantages in comparison to traditional
learning. The term e-learning denotes a type of learning, where knowledge
is mediated to students through electronic media. Existing e-learning sys-
tems [bla, ili, moo], besides other functions, provide information (learning
content) to students. In the beginning, e-learning materials were created
by simple rewriting of texts into an electronic form. Although e-learning
materials are more interactive as before, the information is structured very
weakly.

We may add structure to materials. The structuring of the learning
content is necessary in order to use it efficiently. The content structure re-
sults from the process, how learning content may be developed. It consists
of learning objects [McG04, QH00] with metadata [Dow02] and relations
among them. In general, the content structure may be represented as a
graph. For visualizing of the graph is usually used graph drawing, where
different possibilities of drawing different type of graphs are explored. In
[BETT99], the survey of the techniques used in graph drawing is presented.
However, the content graph has an inherent hierarchy, thus the general graph
is not appropriate for this purpose. We use compound graph [SM91] in-
stead. The algorithms drawing this types of graphs are mainly heuristics
[SM91, Rai, FEC95b], which try to minimize some aesthetic criteria. For
the purpose of e-learning, there is also important to provide some basic op-
erations on the graph, as introduced in [EH00]. However, this research is

1

CHAPTER 1. INTRODUCTION 2

usefull for the subclass of compound graphs – clustered graphs, which are
insufficient for modeling content structure.

The rest of the survey is organized as follows: In Chapter 2 we present
some fields, where the research is applicable. Then we present basic defini-
tions of used objects, the formal model and requirements on content struc-
ture in Chapter 3. The requirements are handling two main areas – storing
and presenting of the content structure. Possible solutions are outlined in
Chapter 4. In this chapter we introduce the comparison of methods of stor-
ing content structure introduced in [DKR05b], as well as some possibilities
of visualizing some information. Most of them were based on graph drawing
research, thus we intend to examine this research in more detail in Chapter
5. We describe existing approaches of drawing of graphs in general, then we
describe the properties of the content graph and outline some research han-
dling graphs with similar properties. At the end, in Chapter 6, we present
some existing solutions in fields mentioned in the first chapter. We conclude,
that although storing of the content has been studied, the visualization of
the structure is not treated sufficiently. However visualization of content
structure is precisely the tool that can help us to avoid getting lost in the
amount of stored information.

Chapter 2

Motivation

There is a lot of information, people have to know and use. Therefore it
is very important to store the information in a meaningfull way. Nowadays
the information is stored unordered. It is a problem when someone needs to
find an information, or even present the information set to another person.
Although in this work we are interested mainly in e-learning systems, there
are also other fields, which require storing a large amount of information and
presenting it to others. In this chapter we outline some particular examples:

• E-learning – presenting learning content to student

• Organizational memory – storing and using information about running
an organization

• Personal memory – the problem seems to be the same as by organiza-
tional memory (but there is a smaller amount of information)

2.1 E-learning

There is no single definition of the term e-learning. E-learning most fre-
quently means an approach to facilitate and enhance learning by means of
personal computers, CD ROMs, Digital Television, Mobile Devices and the
Internet. Some people and organizations under this term understand also
learning via e-mails and discussion forums.

Besides many definitions of e-learning, there are also many usually ad hoc
approaches to the development of e-learning systems. Still, the area would
benefit from a more unified and systematic approach. In our approach we
concentrate mainly on the content of e-learning systems and especially on

3

CHAPTER 2. MOTIVATION 4

its structure and possibilities of storing and representing learning content
utilizing this structure.

E-learning is dynamic: E-learner obtains up-to-date content in realtime.
E-learning is accessible: E-learner can access learning content at any time.
E-learning is interactive: E-learner takes an active role in the process and

influences the learning path.
E-learning is collaborative: People learn one from another, e-learning con-

nects learners and experts.
E-learning is personalized: Every e-learner selects activities from a personal

menu of learning opportunities which are the most relevant to his or
her background, job, and career.

E-learning is comprehensive: Experts provide carefully selected, complete,
and abundant content and learning instructions from many sources.

The content used in e-learning consists of information, which has to
be provided to the e-learner. As it was mentioned, the information can
be various. It may consist of text, tests, pictures, videos, etc. The most
important relation between these objects is prerequisite, which means, that
the first information is necessary to understand the second one. Of course,
there are more types of information and relations between them.

There exist several standards used in e-learning. The main purpose for
introducing them was to enable sharing of learning objects among different
e-learning courses. The most important is IEEE 1484.12.1 - Learning Object
Metadata Standard [IEE02] and the metadate schema SCORM - Shareable
Content Object Reference Model [SCO02] based on this standard. The
important aspects of standards for learning objects and also other standards
and schemata are presented in [HC00].

2.2 Organizational Memory

Organizational memory is the organization, creation, sharing and flow of
information within organizations. The main task is to make the memory
manageable, controllable and measurable.

Many sources consider the organizational memory to be a management
strategy to maximize the Human Capital in an organization. It gives an
insight into the memory distribution within the organization.

CHAPTER 2. MOTIVATION 5

In perhaps every organization, it is very important to store the informa-
tion about the knowledge, roles, processes and actions in the organization.
Information technology has enabled organizations to generate and retain
huge amount of information. Unfortunately, many organizations suffer from
“infoglut”. They have the information they need, but they do not know
they have it. Or, knowing they have it, they cannot find it. There could
be another situation – a former employee had the information or the knowl-
edge how to do something. Loosing such a long-time employee means the
organization could lose the information that only that staff member had.

The best possibility to memorize and keep the information (and find
it, when needed) is a special information system responsible for managing
and providing the information for the employees of the organization and the
organization itself.

We would like to find out, in what ways the information technology can
support business processes, but to do this we need to understand how and
where information might be of use within organizations.

A standard information contained in organizational memory may in-
clude information repositories such as corporate manuals, databases, filing
systems, and even stories (which were originally stored in written form).
Additionally, the individuals are a prime location for retention of the orga-
nization’s knowledge. However, organizational memory can be retained in
many other places, including organizational culture, processes, and struc-
tures.

Chapter 3

Content Structure

If we want to provide some information to a consumer, we first need to ar-
range it to a form suitable for him or her. In this chapter we describe the
content structure, its objects and model. To compare existing approaches
and to create useful representation of content later, we have to understand
the process of content development and resultant requirements on this rep-
resentation.

3.1 Objects of Content Structure

In every kind of the motivation of this research, different terms for the same
object are used. We decided to use the terms from e-learning, as introduced
for example in [McG04, QH00].

In general, an information object (or a concept object) is defined as any
single digital resource. A learning object consist of one or more informa-
tion objects with metadata (learning object metadata - LOM). There is no
standard for the size (or granularity) of learning objects. There are more
definitions for learning object, however within the framework of this paper
we will consider it as an object holding some properties. Learning objects to-
gether with relations defined between them create the learning content. We
will use also a shorter term content. The digital resource is not so important
from our point of view. More relevant part is its structure and LOMs. The
formal representation of this structure is called content structure.

6

CHAPTER 3. CONTENT STRUCTURE 7

3.2 Process of Content Development

At the beginning we have information that we want to use for building
the content. This information consists of information objects as they were
described in the Section 3.1. These may be documents, database tables,
multimedia, web pages, etc1. First of all we have to join these information
objects into larger groupings, to describe them – add metadata [Dow02].
Then we define relations between these groupings. Each grouping represents
a learning object and it can be either a set of several information objects
or a particular information object itself. After adding relations to learning
objects we obtain the content ready for presentation.

Creating relations between the learning objects can be made manually
or automatically. The automatic solutions are based on:

• data mining [HMS01, HK01] or text mining (The practice of an au-
tomated search for patterns in large stores of data. Data mining uses
statistical computational techniques, pattern recognition, etc.)

• building ontologies [Fen01, GPCFL04]

Various criteria for connecting learning objects using both manual and
automatic methods may be used (e.g., similar words or keywords in con-
nected learning objects). In some cases the relations are obvious from the
structure of the document (e.g. links connecting webpages).

The overall schema of content structure development also described in
[MBA03] is shown in Fig 3.1. The resulting structured information (learning
objects and the relations between them) must be stored in some structure.
We do not consider the way the information objects (digital resources) are
stored and referenced. However, we assume that there exist methods for
accessing and presenting them.

The stored content has to be visualized in some way. The visualization
should enable different views on learning content as well as different levels
of detail. Furthermore, it must be possible to change, to add and to delete
relations and learning objects. Thus we are interested mainly in structuring
(i.e. adding metadata and relations), visualization and presentation of the
information.

1We consider information objects as the smallest indivisible units. If it was necessary to
break some digital resource into smaller parts, we suppose it was done by pre-processing.

CHAPTER 3. CONTENT STRUCTURE 8

Learning object

Learning object

Learning object

Learning object

Learning object

m
et

ad
at

a

Information object

Information object

Information object

Information object

Information object

Information object

Information object

Information Structured Information

Figure 3.1: Structuring the information

3.3 Model of Content Structure

Formally a content structure can be represented by a graph. We present a
content structure, where nodes represent learning objects (or rather LOMs)
and edges represent relations between them. We started from the definition
of the Content graph introduced in [WM03] where authors consider two
sets of learning objects - abstract learning objects and displayable learning
objects. Then relations are differentiated according to the type of connected
nodes. This approach is useful, but it appears to be too complex for our
needs. Therefore we introduced an easier model in [DKR05b], which was
later extended by adding the possibility of clusterization in [DKR05a]. The
content structure is defined as follows:

A content structure is a pair CS = (NodeSet, EdgeSet), where

NodeSet consists of nodes containing identification number, node type (sim-
ple or cluster), pointer to resource, resource type (from some defined
set SRT) and some other properties.

EdgeSet is the set of edges containing identification number, source and
target node, edge type (type of the edge can be either from finite set
SET or of type contains) and some application dependent properties.

Each node and edge is identified by a unique id. There are two basic
groups of edges. Context edges represent semantic relationships between
nodes and they have a type from the set SET

2 assigned. Edges of the type
contains belong to the second group. They represent a relationship between
an abstract node (cluster) and more specific nodes contained in that node.
The model allows any number of cluster levels. However, we shall assume
that the clusters are disjoint. This leads to a graph, which has inherent
tree hierarchy beside adjacency edges. This graphs, so called hierarchically
structured graphs, are analyzed later in the Section 5.3.

2The choice of the sets SRT and SET depends on a particular application of the model.

CHAPTER 3. CONTENT STRUCTURE 9

3.4 Requirements for Storing and Visualizing

As mentioned previously, a content structure consists of learning objects and
relations between them. Further we deal only with learning object metadata
as the important part of learning objects. There are some aspects that we
have to take into account when we are deciding how to store and visualize
the content structure.

Storing

Storing LOMs: We have to find and use a suitable format. It should allow
to describe different properties of a learning object.

Storing relations: In general relations can be represented by a graph. It is
important to consider especially the following issues while choosing a
format for storing relations:

• relation properties – support for differentiating among relations
• topology – allowed topology of relations
• structure location – are relations stored together with the corre-

sponding information objects or separately?

Support for visualization: Formats for storing LOMs and relations must
support visualization of structured information. LOMs’ format must
enable easy and fast access to the value of a particular property and the
format for storing relations should support fast retrieval of relation-
ships between particular learning objects. Thus, the most important
criteria is the support for querying.

Visualizing

Easy readable view on the structure of the content is important. Other as-
pects of information visualization are the interactivity and dynamics of the
visual representation. From out point of view, following parts of visualiza-
tion are important:

Visualization of the content is dependent on the type of the resource and
the associated file viewer is used.

Visualization of the content structure and browsing in it (see Chapter 5)

Changing views should allow the user to see only the important part in
detail. During the browsing in the content, the view may change.

Chapter 4

Storing and Visualizing

In the previous chapter we defined the content structure and the main re-
quirements on it. Now we shall discuss several well known approaches of
storing content structure of the form defined above. We offer a brief sum-
mary, which was presented in [DKR05b].

Other important part is information visualization. The information visu-
alization is the use of interactive, sensory representations (typically visual)
of abstract data to reinforce cognition.

4.1 Storing of Content

In [DKR05b] we described four possibilities for storing content structure,
which are from our point of view important (relational databases, direc-
tory structure, web space and structured documents). In Table 4.1 we list
all requirements as defined in Section 3.4 and we summarize how do these
representations fulfill them.

In general, databases offer good support for storing the structure and
querying information. The directory structure and web space effect signifi-
cant restrictions for the node/edge properties. Moreover the directory struc-
ture restricts also the topology of the structure. Using XML, any structure
and properties can be stored, but the access to data is slow. The same holds
also in the case of directory structure and web space.

4.1.1 Related XML Standards

The family of XML related technologies is extensive. In this section we
describe some standards for storing learning content. There exist several

10

CHAPTER 4. STORING AND VISUALIZING 11

databases directory
structure

web space XML

storing LOMs

- property types any restricted (FS
dependent)

restricted any

storing relations

- supported topology any tree or directed
graph (FS de-
pendent)

any any

- relation types any restricted (FS
dependent)

restricted any

- location included
in LOM or
separate

implicit or in-
cluded in LOM

included in
LOM

implicit or
separate

visualization

- queries fast slow slow slow

Table 4.1: Comparison (FS = file system)

metadata schemata specifying learning objects’ metadata. The main pur-
pose for introducing them was to enable sharing of learning objects among
different e-learning courses. We describe a standard and schema for repre-
senting LOMs in e-learning. Since the content structure may be seen as a
graph, we introduce also an XML standard for representation of graphs.

IEEE 1484.12.1 - Learning Object Metadata Standard [IEE02] de-
scribes the LOM data model, also known as the conceptual data schema.
This specifies what characteristics of a learning object may be described
and how these characteristics should be recorded. It also defines how this
data model can be customized by adding extensions (e.g. new vocabularies)
or constraints (e.g. restricting the number of elements that may be used).
Due to the standard, the metadata are distributed in nine categories (Gen-
eral, Life-Cycle, Meta-Metadata, Technical, Educational, Rights, Relation,
Annotation, Classification). These categories group together data elements.

One of the most often used metadata schema based on IEEE Standard for
Learning Object Metadata is SCORM [SCO02] (Shareable Content Ob-
ject Reference Model). It is the XML standard for web-based e-learning. It
defines how the individual instruction elements are combined on a techni-
cal level and sets conditions for the software needed for using the content.
The metadata are distributed among subelements defined in IEEE Learning
Object Metadata Standard. From the most important we mention following:

CHAPTER 4. STORING AND VISUALIZING 12

General: identifier, title, language, description, keywords
Technical: format, size, location, requirement
Educational: interactivity level, learning resource type, context, difficulty,

typical learning time, context, description
Relation: kind, resource

GraphML [graa] is a graph format based on GML1. It is capable to
store simple directed, undirected and mixed graphs. Advanced features
enable to describe clustered graphs, hyperedges and node ports. There are
several extensions – attributes holding parsing meta-data, possibility to add
specific XML attributes and complex types to the language. An interesting
extension is the LEDA (C++ class library dealing with graphs) extension,
but it currently supports only the most common types of graphs.
GraphML and other XML formats (GXL, XGMML, GraphXML) are still
not as well supported as widely used non-XML formats Dot and GML.

4.2 Visualizing Content Structure

In this section we describe possibilities and tools for visualizing the content
structure as it was described in Section 3.3. Formally the content structure
is a directed graph. The possibilities of visualization of graphs (not the
graph drawing in general) are discussed in [HMM00]. In this section we
offer an overview of some tools, that can be used for visualizing the content
structure.

Most of the tools are built on principles of graph drawing. Therefore we
consider graph drawing to be also a good solution for the visualization of
the content structure. It is a general way, how to visualize some structured
information. In Chapter 5 we introduce this area of research in context of
drawing the content graphs.

The Thinkmap [Inc05] is a commercial system for visualizing different
data and information. Since the system helps viewers to understand the
architecture of the information and thereby find the information they need,
it can be also used in organizational memory management.

It provides four types of visualization of the information, thus it can offer
multiple views on the same data. The visualization is especially designed
for these types of information:

1Graph Modeling Language is a frequently used non-XML language for describing
graphs.

CHAPTER 4. STORING AND VISUALIZING 13

- Spider display: for browsing relational information without hierarchy.
- Hierarchy: for visualizing the hierarchy relation.
- Clustering: for groups of related entities, the thickness of the edge

represents the strength of cohesiveness of relationships in the cluster.
- Chronology: for visualizing data, where time is an important facet.

The system can visualize data sources that can be both structured (SQL,
XML) and unstructured (files, web-pages, e-mails). Thinkmap provides data
to unified interfaces, that allows users to search and browse in it.

The Thinkmap also enables users to create their own customized Think-
map applications with their data, and to integrate this information with
their enterprise applications. The examples of such usage of Thinkmap are
Visual Thesarus, Sony Music Licensing or Ecosystem Explorer.

Although the Thinkmap seems to be the best of the listed solution, the
tool is not sufficient for drawing the content structure. Even if it supports
visualizing of clustering, the problem with visualizing graph obtained by
combining the clustering with general graph remains unsolved.

Prefuse [HCL05] is an open source user interface toolkit for building
highly interactive visualizations of structured and unstructured data. This
includes any form of data that can be represented as a set of entities (or
nodes) possibly connected by any number of relations (or edges).

This toolkit is based on graph drawing and uses different methods (see
Chapter 5) and algorithms to visualize different types of information.

Process of visualizing in Prefuse starts with abstract data in some canon-
ical form. Most of the applications use a graph data set in XML files. It
supports any number of attributes in every type of entity (Node, Edge,
Aggregate).

Prefuse is used, for example, for visualizing social networks (Orkut etc.).
Prefuse, as the previous tool, do not support visualizing graphs contain-

ing inherent hierarchy (e.g. clustered graphs, or compound graphs as defined
later in Section 5.2).

InfoVis [Fek04], GraphViz [grab] and others are software packages
aimed at simplifying the development of Information Visualization Systems.
There are many of such toolkits for visualization of graphs, tables, trees,
structured documents and other structured information. All of them are
drawing the simple structure, but extensions as clustering or other views
are not possible.

Chapter 5

Drawing of Content Graph

Graph drawing is motivated by applications that require visualization, na-
vigation, fabrication, or beauty of its physical or conceptual artifacts that
have been embedded into a graph’s structure. It is a key ingredient in
technologies as varied as VLSI circuit design, social networks, user interface
design, software engineering, computer networks, e-commerce, cartography,
and bioinformatics.

Basic rules for graph drawing algorithms, the drawing must satisfy, are
called drawing conventions. The most often used are constraints on the
design of edges (polyline drawing, straight-line drawing, orthogonal drawing),
placement of vertices (grid drawing) and general constraints on the drawing
(planar drawing, upward drawing).

To these basic assumptions, we can add other aesthetic criteria, that we
would like to apply as much as possible. Among others, there are criteria
concerning the total area of the drawing, its aspect ratio, on the edge length
(total, maximum, uniform), number of bends on edges (total, maximum,
uniform), number of crossings of the edges and a criteria of symmetry.

Drawing conventions and aesthetic criteria are requirements, which the
whole drawing has to satisfy (or would be nice if the graph would satisfy
them). On the other hand, there are also constraints, which can refer to
a subgraph or subdrawing. For example, we want, that a given vertex to
be in the middle or in exterior of the drawing. Or we request, that some
vertices (contained in a cluster) are drawn together. Of course, there are
many possibilities on constructing some constraints (they are application
dependent).

As supposed in [HE] the criteria were not originally based on experi-
mental data. There might be better criteria which can play an important

14

CHAPTER 5. DRAWING OF CONTENT GRAPH 15

role in graph understanding. In this article, authors studied people reading
graphs and concluded, that some existing criteria (minimization of bends,
minimization of crosses per edge etc.) are really essential.

In this chapter we discuss possibilities of drawing a content graph defined
in 3.3. First of all we describe different approaches used in graph drawing
in general. Then we describe our graph and find out the requirements (aes-
thetic criteria, constraints, other specific requirements) the “good” drawing
has to fulfill. At the end, we outline some relevant researches, dealing with
graphs similar to the content graph.

5.1 Approaches in Graph Drawing

In this section we introduce some of the approaches most used in graph
drawing. For more information about basic approaches in drawing of graphs
see for example [BETT99].

5.1.1 Topology-Shape-Metrics Approach

The Topology-Shape-Metrics Approach is often used in real-life applications
(entity-relationships, data flow diagrams). It produces a drawing, where
given a grid, the vertices are on grid points and edges are sequences of
vertical and horizontal segments between grid points. Such drawing is called
orthogonal drawing.

The orthogonal drawing (more generally polyline drawing) is charac-
terized by three fundamental properties (equivalence relations): topology,
shape (topology stays the same only lengths of edges are modified) and
metrics (congruent, up to a translation and/or rotation).

Generating the final drawing consists of three steps (see Figure 5.1):

Planarization step is often used as a part of graph drawing algorithms,
which produces a planar graph by adding dummy vertices instead of
potential crossings of edges to given general graph. Testing of pla-
narity can be done in linear time [HT74], but to find the maximum
planar subgraph of given graph is NP-hard, hence existing planariza-
tion techniques use heuristics. The best available algorithm for the
maximum planar subgraph problem is described in [JM96].

Orthogonalization step is the main part of the approach. It determines
the shape of the drawing. There are different possibilities for producing
an orthogonal grid drawing for planar graph where the maximal degree
of vertex is at most four (see [BETT99]).

CHAPTER 5. DRAWING OF CONTENT GRAPH 16

1

3

4

7

6

5
2

(a) Planar graph

1 5

6

732

4

(b) Orthogonal
drawing

4 6

732

51

(c) Compacted
orthogonal drawing

Figure 5.1: Topology-Shape-Metrics Approach

Compaction step minimizes the area of the drawing by shortening the
edge lengths.

Due to the sequence of the three steps of the algorithm, the importance
of aesthetic criteria is ordered. Minimization of crossings (number of dummy
vertices added to the graph) has higher priority as the minimization of bends
(orthogonalization step). The minimization of the area of drawing, the min-
imization of the sum of lengths of the edges and the minimization of the
longest edge is done at the end, in the compaction step, if it is still possible.

The constraints, as well as the aesthetic criteria, are formed according
to the order of the steps of the algorithm. The topological constraints are
the most important. The shape constraints depend on the second, orthogo-
nalization phase and are therefore more significant as the metrics.

5.1.2 Hierarchical Approach

The hierarchical approach is used for drawing acyclic digraphs. This type
of graphs are often used for modelling dependency relationships, thus the
approach is often used in existing systems. The algorithms can be extended
to draw a general digraph by adding a step, that forces the graph to be
acyclic by reversing a subset of its edges.

The hierarchical approach (originally presented in [STT81]) consists of
three steps (see Figure 5.2):

Layer assignment step: The vertices are assigned to horizontal layers.
The concept of layering of a digraph is similar as topological number-

CHAPTER 5. DRAWING OF CONTENT GRAPH 17

1

2

3

4

5

6

(a) Directed
Graph

1

3 4

6

5

2

(b) Proper Layered
Digraph

1

3

6

2

4

5

(c) After Crossing
Reduction

21

3

4

5

6

(d) Final Drawing

Figure 5.2: Hierarchical Approach

ing. The layering should be as compact as possible, but it should be
proper (i.e. every edge connects vertices in neighbouring layers).

We introduce some layering algorithms:

• The Longest Path Layering – the vertex is placed on the layer
Lp+1, where the longest path from the vertex to a sink has length
p. This layering minimizes the height of the drawing.

• Layering to Minimize Width – the problem of finding the layering
with minimum width on condition that its height is minimal is
NP-complete (easy to derive from [GJ79]). Thus the algorithms
for this type of layering are heuristics. An example of heuris-
tic algorithm based on the multiprocessor scheduling theory is
Coffman-Graham-Layering [CG72].

• Minimizing the Number of Dummy Vertices – the layering can be
computed in polynomial time [GKNV93].

Crossing reduction: Having a proper layered digraph we reduce number
of crossings by ordering vertices on each layer. In fact, the prob-
lem of minimizing edge crossings in layered digraph is NP-complete
[GJ83, MNKF90], hence various heuristic algorithms are used for this
purpose. The general format of most techniques is the layer-by-layer
sweep, where the vertex ordering of layer Li+1 is derived from the ver-
tex ordering of the layer Li by minimizing crossings between edges
between vertices in these layers.

Horizontal coordinate assignment step: By replacing dummy vertices
introduced in first step, bends in edges may occur. This step should

CHAPTER 5. DRAWING OF CONTENT GRAPH 18

7

9

8

4

3
5

6

2

1

(a) Directed Graph

2

3

4 5

8 7 6

1

9

(b) Visibility Representation

1

3

2

5
4

8

9

6
7

(c) Polyline drawing

Figure 5.3: Visibility Approach

minimize the angle of bends by choosing the x-coordinate for each
vertex.

Some aesthetic criteria can be achieved. By replacing dummy vertices
we affect the number and angle of bends, by ordering vertices on layers the
symmetry of the graph is influenced.

5.1.3 Visibility Approach

This approach (first presented in [BT88, BTT92]) uses the visibility rep-
resentation of the graph. A visibility representation of a graph (see Fig-
ure 5.3(b)) draws each vertex as horizontal (vertex) segment and each edge
as a vertical (edge) segment. The only intersection of the edge segments and
vertex segments are the top and bottom points of the edge segments, which
are common with segments of vertices to which the edge is incident. Having
the visibility representation, we get the positions of vertices by replacing
each vertex segment with some point from it (Figure 5.3(c)). The edges are
connecting incident vertices containing some part on their edge segment.
We obtain the drawing with polyline convention.

Because the visibility representation requires planar graph, the first step
in visibility approach algorithms must be the planarization step.

The planarization step brings the same aesthetics criteria and constraints
as written before. By producing the visibility representation we can try to
minimize the area of the drawing or fullfill some constraints (vertical align-
ment of selected paths, relative horizontal and vertical positions of pairs of
vertices etc.). In the replacement step, several strategies are possible. De-

CHAPTER 5. DRAWING OF CONTENT GRAPH 19

pending on the strategy, the following can be reached: minimizing the bends,
balancing the distribution of edges and vertices, maximizing the symmetry
of the drawing, etc..

5.1.4 Augmentation Approach

The augmentation approach is a method for drawing graphs in the polyline
drawing convention (see for example [Mut95]). The basic idea is to add edges
and vertices to the graph to obtain a new graph with a stronger structure
(in this case, the faces are triangles). The method consists of three steps:

Planarization step: the same as in topological-shape-metrics approach

Augmentation step: adds a suitable set of edges to achieve the maximal
planar graph (with triangle faces) or a planar graph with certain level
of connectivity.

Triangulation drawing step: there are several algorithms for straight-
line drawing of graphs with triangle faces. We remove dummy vertices
and edges to achieve polyline drawing.

Since the planarization step is done as in topological-shape-metrics ap-
proach, the crossing reduction is the most important aesthetic criteria. Dur-
ing other steps different strategies to minimize area, maximize the angular
resolution and distribute vertices can be used.

5.1.5 Force-Directed Approach

The Force-Directed Approach is an intuitive method for creating straight-
line drawings of undirected graphs. The algorithms using this approach are
heuristics. Some of them are empirically analyzed in [BHR96]. The resulting
drawing is highly symmetric and the vertices are very well distributed.

The algorithm can be divided into two logical parts. At the beginning we
find a suitable force model. Given the force model, we find a local minimum
energy configuration.

The variety of constraints is possible according to chosen force model (for
example vertices can be placed within a given region or on a given curve).
As written above, the drawing fulfills a lot of aesthetic criteria.

5.1.6 Divide and Conquer Approach

Divide and Conquer Algorithms are used for handling structures, that can
be easily divided into smaller substructures with the same properties. Es-

CHAPTER 5. DRAWING OF CONTENT GRAPH 20

pecially trees and series-parallel digraphs are the classes of graphs that are
often drawn using this approach. For drawing trees an algorithm producing
layered drawing is presented in [RT81].

The common algorithm using divide and conquer approach has the fol-
lowing structure:

procedure D&C(graph G);
if (G is trivial) then Draw(G)
else begin

divide G into smaller subgraphs G1.. Gn;
for i:=1 to n do D&C(Gi); {draw the subgraphs}
place the drawings and draw remaining vertices;

end;

5.1.7 Incremental Drawing of Graphs

Incremental techniques of graph drawing address the problem of maintaining
a drawing of a graph while the user is interactively modifying the graph. If
some operation is performed on the graph, then the new graph should be
redrawn.

Most approaches [MHT93, PST97] try to address two main problems: ef-
ficiency of the algorithms and preserving the mental map. In [MELS95, Rai]
the techniques, where the redrawing of the graph is as minimal as possible,
are described. From user’s point of view it is important, since the user’s
mental map is thereby preserved.

There are different scenaria for interactive graph drawing:

full-control scenario: the user has full control over the position of a new
vertex in the current drawing.

draw-from scratch scenario: every time, user request is posted, the new
graph is drawn.

relative coordinates scenario: general shape of the drawing remains the
same, coordinates of vertices and edges may change by a small con-
stant.

no-change scenario: the already placed vertices and edges do not changes
at all.

5.2 Attributes of Content Structure Graph

The content structure (CS) was defined in the Section 3.3. Formally CG can
be viewed as a directed graph. To recall CS is a pair (NodeSet, EdgeSet).

CHAPTER 5. DRAWING OF CONTENT GRAPH 21

Tr

2 3

4 5 6 7
B

A C
1

(a) Forest T

Tr

1

2 3

4 5 6 7

A

B

C

(b) Directed graph G

Figure 5.4: Clustered content graph

The NodeSet = V consists of two types of nodes – simple nodes and clusters.
The EdgeSet = F is a set of directed edges of different types. On type of
edge (contains) is explicitly defined. We can extract these edges and define
a clustered and compound graph as [EFN99, SM91].

Clustered graph is a pair CG = (G, T), which consists of a directed graph
G = (V ′, F) and a tree T = (V,E), where V ′ are exactly the leaves of the
tree T . For our purpose this definition is not sufficient, therefore we define
the compound graph.

Compound graph D = (V,E, F) consists of nodes V , inclusion edges
E (edges of type “contains”) and adjacency edges F . It is required, that
the inclusion digraph T ′ = (V,E) is a rooted tree with the root rT and no
adjacency edge connects a node to one of its descendants or ancestors. In
some cases the graph T ′ may be also a forest, where the roots of the trees
contained in the forest are connected to imaginal vertex rT . In that case, we
denote the tree created from the forest with trees T1 . . . Tt by adding a vertex
rT as T . Otherwise we denote T := T ′. The graph G = (V, F) is directed
graph where no adjacency edge connects a node to one of its descendants
or ancestors in T .1. A small example of a compound graph is pictured in
Figure 5.4.

Let U ⊂ V be such set of vertices that for each vertex v ∈ U all siblings
of v belong into U as well. The view on the compound graph D containing
vertices U is denoted D[U] = (U,E(U), F (U)) (see Figure 5.5). The view
D[U] fulfills these properties:

1Note, that the graph G contains also the clusters as vertices, unlike the clustered
graph.

CHAPTER 5. DRAWING OF CONTENT GRAPH 22

Tr

T

1

2 3

4 5 6 7
T[U]

(a) The subtree of T

Tr

1

2 3

4
B

A C

(b) The view induced by a sub-
graph U

Figure 5.5: The view on compound graph G

• E[U] = {(u1, u2) ∈ E | u1, u2 ∈ U}

• T [U] = (U,E[U]) is a connected subtree of T , which contains the root

• G[U] = (U,F [U]), where the set of edges F [U] contains

– all originall edges F1[U]
F1[U] = {(u1, u2) | u1, u2 ∈ U ∧ (u1, u2) ∈ F}

– new induced edges F2[U] (edges going to contracted clusters,
which were not contained in F)
F2[U] = {(u1, u2) | ui ∈ U ∧ ∃vi ∈ T (ui)∩∩(V \U) : (v1, v2) ∈ F}

On the compound graph, we can execute some basic operations mani-
pulating with some object of the graph:

Nodes: adding, removing, changing properties
Edges: adding, removing, changing properties
Clusters: adding, removing, expanding, contracting

The cluster v is called contracted in the view U, if the vertex v is a leaf
of T [U]. Otherwise the cluster is called expanded. The interpretation of
expanded (resp. contracted) clusters is that the content (nodes, that are
contained in the cluster) of the expanded cluster can be seen unlike the
content of the contracted one.

After every operation, we want the graph to be similar to the previous
one as much as possible and after executing inverse operation the graph has
to be also similar to the initial one.

CHAPTER 5. DRAWING OF CONTENT GRAPH 23

1

2 3

4

5

6

7

A

B

C
(a) All clusters expanded

1

4
A

B
C

2 3

(b) Cluster C is contracted

Figure 5.6: Drawing of content graph

In the drawing of a view D[U], the graph G[U] = (U,F [U]) is drawn
as points and curves as usual (the clusters and simple nodes can be distin-
guished). For each node v ∈ T [U] the cluster is drawn as simple closed region
(e.g. rectangle), such that all drawings of nodes in subtree T [U](v) rooted
in v and edges connecting two of such vertices are drawn in the interior. All
other nodes are drawn in the exterior of the region.

The drawing of the compound graph from Figure 5.4 with all clusters
expanded and after contracting of cluster C is depicted in Figure 5.6.

The requirements on the drawing of the content structure could be sum-
marized as follows:

– leave the important vertices where they are (if possible)
– after executing an operation, the resulting drawing should be similar to
the initial one
– vertices contained in cluster are drawn together – in rectangle
– minimize the crossings and no region crossings

Notice that each node of the graph could be a part of just one cluster.
We can extend the definitions above as follows: Extended compound graph
is D′ = (V,E, F), which consists of a directed acyclic graph T = (V,E)
and a directed graph G = (V, F). Other definitions can be extended in a
similar way. The problem “How to draw the clusters with common node?”
arises.

5.3 Hierarchically Structured Graphs

The research on dealing with graphs similar to content graph covers prob-
lems that arise in conjunction with hierarchically structured graphs, i.e.,

CHAPTER 5. DRAWING OF CONTENT GRAPH 24

with graphs that have – besides the ordinary adjacency relation – an addi-
tional hierarchical structure. Popular examples for this types of graphs are
compound graphs [SM91] or clustered graphs [FEC95b].

5.3.1 Drawings of Compound Graphs

As the amount of information increased, the classical graph models were
not sufficient for representing it and more powerfull models (hypergraphs,
compound graphs etc.) appeared. The classical graph drawing can not be
used for drawing of these models, the drawing is too difficult.

One of the general definitions of graphs with hierarchical structure are
compound graphs, as defined above.

Until the year 1995, only heuristic algorithms for hierarchical layout of
compound digraphs have been presented. An example of such algorithm
is introduced in [SM91]. The drawing is produced in four steps and the
hierarchical approach is used:

Hierarchization: Produces layered graph
Normalization: Adds dummy vertices to produce the proper layered graph.

This step together with hierarchization is the layer assignment step in
hierarchical approach.

Vertex Ordering: Orders the nodes on the layer. The vertex ordering
algorithm works depth-first.

Metric Layout: Assigns coordinates and dimensions to the nodes of the
ordered compound graph. The local coordinates are optimized with
the priority method on the metric local hierarchy, which is basically
the local hierarchy from previous step.

In [Rai] the algorithm is improved, the update scheme for local changes
is presented. Since in vertex ordering step the relative order of nondummy
vertices is kept, the users’ mental map is preserved.

5.3.2 Drawings of Clustered Graphs

In 1995 were clustered graphs, as a simpler subclass of compound graphs,
introduced in [FEC95b]. For clustered graphs several algorithms and ap-
proaches were presented.

Let us mention some relevant definitions and algorithms:
The clustered graph C = (G, T) consists of an undirected graph G and

a rooted tree T in that way, that leaves of T are exactly the vertices of G.

CHAPTER 5. DRAWING OF CONTENT GRAPH 25

Let C1 = (G1, T1) and C2 = (G2, T2) be two clustered graphs. We say, that
C1 is a sub-clustered graph of C2 iff T1 is a subtree of T2 and for each node
u ∈ T1 the graph G1(u) 2 is a subgraph of G2(u). The clustered graph is
connected if each cluster induces a connected subgraph of G. The clustered
graph is planar if each cluster induces a planar subgraph of G. The drawing
of a clustered graph is C-planar if there are no edge-regions crossings and
no edge crossings. If a clustered graph has C-planar drawing, it is said to
be C-planar.

The following results from [FEC95a] characterize C-planarity.

Theorem 5.3.1 A connected clustered graph C = (G, T) is C-planar if and
only if G is planar and there exists a planar drawing D of G such that for
each node u of T all the vertices and edges of G \G(u) are in the outer face
of the drawing of G(u).

Theorem 5.3.2 A connected clustered graph C = (G, T) is C-planar if and
only if it is a sub-clustered graph of a connected and C-planar clustered
graph.

Using these theorems and the theorem of Tutte, that every 3-connected
planar graph admits a planar straight-line convex drawing, in [FEC95b]
was presented an algorithm for straight-line convex C-planar drawing of a
subclass of C-planar clustered graph. It only applies to graphs with a certain
strong connectivity property. They also demonstrated the area lower bound
(Θ(2n)) and angle resolution upper bound (O(1/n)) for straight-line convex
C-planar drawing of C-planar clustered graphs. The question about the
existence of an algorithm for drawing straight-line convex drawing for every
C-planar clustered graph remains open.

Later in [EF96b] and [EF97] the straight-line constraint was relaxed
and orthogonal-grid rectangular clustered drawing (i.e. drawing with edges
drawn as sequences of horizontal and vertical segments, vertices drawn on
grid points and regions for clusters drawn as rectangles) was produced. The
visibility approach was used for this purpose. The performance is as good
as existing results for classical graph drawings.

The straight-line constraint was recalled again. In [EFLN97] the ques-
tion, which remained open in [FEC95b] is answered positively by transform-
ing clustered graphs into hierarchical graphs.

2the graph induced by all descendants of u in T1

CHAPTER 5. DRAWING OF CONTENT GRAPH 26

5.3.3 Visualizing of Hierarchically Structured Graphs

The approach oriented on drawing of hierarchically structured graphs is also
supported by researches, which study possibilities of the visualization of the
graph and the operations.

In [EF96a] the traditional 2D representation was extended to 3D mul-
tilevel representation. A natural method of such representation is to draw
different levels of abstraction on planes with different z-axis. This type of
representation is useful in preserving the mental map among abstractions
levels.

Problems with large amount of information could be overcome in [EH00]
by combining clustering of the graph and the navigation through the graph.
Authors introduced the Clustered Graph Architecture (CGA), which was
designed for systems, where user manipulates data in four layers.

Graph layer manipulates nodes, edges and their attributes
Clustering layer has two basic operations create cluster and delete cluster
Abridgment layer shows and hides some information (operations: open

cluster, close cluster, hide node)
Picture layer makes changes in displayed picture (moving, scaling etc.)

The visual navigation of compound (clustered) graphs by expanding and
contracting nodes has been introduced in [SM91]. They seem to implement
these operations by reusing the algorithm for drawing compound graph. In
[HE01] authors briefly describe a system for handling huge clustered graphs
based on the force-directed layout model.

Other possible manipulation with compound graphs is handled in [Rai],
where the local update scheme for the algorithm from [SM91] for drawing
views of compound graphs is presented. In Figure 5.7 is depicted the dif-
ference, between results given by redrawing of the graph by the algorithm
from [SM91] and the local updating of the graph as described in [Rai].

This result is the most important from our point of view, because the
resulting drawing better preserves the user’s mental map of the graph view
and has most of the properties, which we need for drawing of the content
graph. Moreover, the update schema is more efficient than the redrawing of
the graph, because almost all steps of the algorithm are applied only locally.

Two basic operations expand cluster and contract cluster are defined and
performed on the graph.

Expanding: In hierarchization, the nodes from previous view stay on their
levels, only new vertices are placed on new levels (within expanded

CHAPTER 5. DRAWING OF CONTENT GRAPH 27

(a) Before expanding the
shaded node

(b) Result of update
scheme

(c) Result of redrawing

Figure 5.7: Redrawing vs. Update scheme

node’s level). The new edges obtain the orientation from existing edges
(all new edges are incident to new vertices), and in second step, they
are made proper as before. All old nodes stayed on their level, thus
in the third step – vertex ordering, only new nodes and new dummy
nodes have to be ordered. The relative order of other nodes has to be
preserved. Only the relative coordinates of the expanded node and its
ancestors are computed in the metric layout step.

Contracting: Contracting is the visual inverse operation to expanding. It
is possible only for nodes expanded with the update scheme. The new
nodes are a subset of the old nodes. Results of first, second and third
step are restricted to new nodes. The metric layout step is applied.

At the University of Passau started this year the project Ein Editor für
hierarchisch geschachtelte Graphen [Pas], based on two diploma theses of
their students. The main purpose of the project is to produce an editor for
hierarchically structured graphs.

Chapter 6

Existing Solutions

In this chapter we present some existing solutions, which help to store
some structured information. The existing systems can be divided into
groups, according to way they are used. The largest is the group of learning
management systems and course management systems, which are used for
e-learning. These systems are not designed to store the course information
and learning content only. They have also a lot of additional properties
(e.g. forums, quizzes, chats, etc.), which are not important for our work.

6.1 Learning Management Systems

A Learning Management System (or LMS) is a software package, usually on
a large scale (that scale is decreasing rapidly), that enables the management
and delivery of learning content and resources to students. Most LMS sys-
tems are web-based to facilitate the concept of “anytime, anywhere” access
to learning content and administration. There are many Learning Man-
agement Systems available. Comparison and evaluation of some Learning
Management Systems was done in 2002 in Germany and Austria [Kri02].
Most of them are very similar to each other. The differences between learn-
ing management systems are the availability, localization (languages), price
etc. In this section we introduce some systems, which seem to be the most
important nowadays.

Moodle [moo] is a course management system – a free, Open Source soft-
ware package designed by using pedagogical principles, to help edu-
cators create effective online learning communities. The Moodle ar-
chitecture is based on PHP, HTML and one database (which can be
shared for several courses).

28

CHAPTER 6. EXISTING SOLUTIONS 29

There is a lot of course activities (Forums, Quizzes, Resources, Choices,
Surveys, Assignments, Chats, Workshops) and management modules
(site management, user management, course management etc.) in the
system.

The most important module, from our point of view, is the resource
module, which manages the learning resources. This module supports
display of any electronic content, external content (via hyperlinks),
external applications. The content structure is represented as hierar-
chical structure (the end nodes could be also web pages outside the
system) and presented as web pages.

Ilias [ili] is a powerful web-based learning management system that allows
users to create, edit and publish learning and teaching material in
an integrated system using their normal web browsers. It came as a
winner for German-spoken countries in [Kri02].

Blackboard [bla]) is a commercial software powering teaching and learn-
ing in many languages.

6.2 Personal Information Management Systems

Personal information management system is an application software that
keeps track of personal information and data. There are several software
packages that do this.

Treepad [tre]) is a tool for managing information in a tree structure. The
content is presented similarly to the visualization of a directory structure
in a file browser. However in this case the underlying format for storing
content structure is a mark-up language similar to XML.

6.3 Web-based Solutions

Web-based solutions are very popular, because information is mostly stored
in the web-space. Web space can be locally visualized through web browser
(no further processing for presentation has to be done) and it provides sup-
port for local browsing as well. There are also new approaches, that con-
centrate on an automatic search of information in web-space. With such
systems, the information in web-space would be better arranged and hence
easier to find.

CHAPTER 6. EXISTING SOLUTIONS 30

Wikipedia [wik] is a multilingual, Web-based, free-content encyclopedia.
It is written collaboratively by volunteers with wiki software, which allows
articles to be added or changed by nearly anyone.

Wikipedia has all the advantages and disadvantages of web-based rep-
resentation (described for example in [DKR05b]). The content can be pre-
sented directly on the webpage and some additional information is available
via hyperlinks. The largest problem of webspace is that one can get lost in
the amount of hyperlinks and web pages. We can avoid this by restricting
the content graph into tree or DAG. However, this topology may not be
sufficient.

mSpace [msp] is a semantic web solution. It is an interaction model
that helps to store and explore relationships in information. The applica-
tion, which won the Semantic Web Challenge 2003, is described in IEEE
Intelligent Systems.

The Semantic Web is a project that intends to create a universal medium
for information exchange by giving meaning (semantics), in a manner un-
derstandable by machines, to the content of documents on the Web. The
Semantic Web extends the World Wide Web through the use of standards,
mark-up languages and related processing tools. The Semantic Web is at
the moment the vision of further solution. This application is one of the
first solutions.

The logical description of an mSpace is available in the draft report
[GHS04], which provides a tentative mapping to OWL-based Semantic Web
concepts.

Chapter 7

Conclusion

In this survey we described the most important aspects of presenting the
content structure. As the main area, where presenting the content is appli-
cable we have chosen the e-learning systems, since the learning content has
to be stored and then presented to students in a comprehensible way.

E-learning is a frequently used term in recent years. It denotes a type of
learning, where knowledge is mediated to students through electronic media.
The learning content is mostly published in internet.

Thus we first described the possibilities of storing the content, which re-
sult from the way, learning content is produced and from the requirements
on it (storing metadata, relations, support for visualization). Very impor-
tant part connected to storage of the learning content is its visualization.
From the psychological point of view, the visual perception can reinforce
cognition. We viewed existing tools for visualization of information, but
they do not seem to be sufficient for our purpose.

We introduced the graph drawing research, since the learning content
can be seen as a graph, where nodes are learning objects and edges are
the relations among them. However, the content graph has some special
attributes. There are special nodes, so called clusters, which may contain
other nodes. In general, this type of graphs are called hierarchically struc-
tured graphs. As a good possibility of visualizing the learning content we
consider drawing of the content graph.

We gave a brief summary of graph drawing approaches, which may be
useful for drawing the content graph. After that, we focused on research
on hierarchically structured graphs, e.g., clustered graphs and compound
graphs. We described algorithms for drawing such graphs. Another impor-
tant aspect of visualizing the content is the navigation in the graph. We

31

CHAPTER 7. CONCLUSION 32

summarized also the results in this area.
At last we presented some existing systems for storing and presenting

information. We concluded, that even though the existing systems are ro-
bust and have a lot of additional properties, the visualization of the content
is not included. Thus the presentation of the content is not comprehensible
enough and the user may get lost in the amount of given information.

Chapter 8

Project of Dissertation
Thesis

In e-learning systems the learning content is presented for students. Most
existing e-learning systems are web-based, i.e., the learning content is pre-
sented on web pages. Surfing or browsing through the content suggest mov-
ing among discrete web pages which potentially have only very loose associ-
ations between them. The example of such loose association is relation next
in the book, which is often used in learning content obtained from existing
book. Using such relations one can go far away from the topic, he wants to
read about.

The aim of the thesis is to utilize graph drawing algorithms for presenting
structured information, in particular, in e-learning systems.

We plan to build upon the graph model for learning content we developed
in [DKR05b, DKR05a]. First we need to analyze existing content in order
to specify a particular type of graphs, that occur in e-learning environment.
In general the content graph is compound graph, as introduced in [EFN99,
SM91, Rai], where several algorithms for drawing compound graphs are
also introduced. Once this class is specified we shall study the usability
of existing graph drawing algorithms for this particular class. We plan to
analyze some algorithms on compound graphs as well as other algorithms
(e.g. [FEC95b]), which may be suitable for drawing the specified class of
graphs.

We expect, that we can find more efficient modifications of those algo-
rithms due to the fact, that we expect the conent graphs to have specific
properties. On the other hand, we envision a need to modify the existing
algorithms due to the specific needs of the e-learning content presentation

33

CHAPTER 8. PROJECT OF DISSERTATION THESIS 34

(e.g., nonzero size of nodes, positioning of captions, clustering of nodes,
several node and edge types, specific requierments on positioning nodes,
incremental changes preserving the general structure, etc.). The main re-
quirement is that the drawing should preserve user’s mental map, i.e., after
each operation, the drawing of the new graph should be as similar as pos-
sible to the previous one. Eventual modification of the requirement above,
should be preserving not the whole user’s mental map, but only the impor-
tant parts of it i.e. some important vertices stay on their positions while
coordinates of the less important ones may change.

We shall design and study these modifications and compare their effi-
ciency with the existing algorithms.

Finally, we shall need to design and implement a visualization tool that
will enable to work interactively with the content graph. The tool should al-
low browsing through the graph as well as performin basic operations on the
graph (adding and removing vertices and edges, expanding and contracting
clusters).

We are convinced that utilization of the content structure in existing sys-
tems may be good for students. The well structured content and a possibility
to exploit this structure can enhance the usability of e-learning systems. It
may help students to orient themself in the amount of information in learn-
ing content. In addition, some new (semantic) associations can be added
to the learning content, which may extent the web pages used in e-learning
systems, as it is aimed in the Semantic Web.

Bibliography

[BETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Alan
Apt, 1999.

[BHR96] F. J. Brandenburg, M. Himsolt, and C. Rohrer. An experimen-
tal comparison of force-directed and randomized graph drawing
algorithms. In Proceedings Graph Drawing ’95, 1996.

[bla] Blackboard. http://www.blackboard.com.

[BT88] G. Di Battista and R. Tamassia. Algorithms for plane repre-
sentations of acyclic digraphs. Theoretical Computer Science,
61:175–198, 1988.

[BTT92] G. Di Batista, R. Tamassia, and I. G. Tollis. Constrained visi-
bility representations of graphs. Inform, Process. Letter, 41:1–7,
1992.

[CG72] E. G. Coffman and R. L. Graham. Optimal scheduling for two
processor systems. Acta Informatica, 1:200–213, 1972.

[DKR05a] J. Dvořáková, J. Katreniaková, and B. Rovan. Capturing con-
tent structure in xml: Formal languages e-course example.
E-Learning Conference, Berlin, 2005.

[DKR05b] J. Dvořáková, J. Katreniaková, and B. Rovan. Representing
content structure for e-learning systems. In Information Tech-
nologies – Applications and Theory, pages 361–370, 2005.

[Dow02] S. Downes. Topic representation and learning object metadata,
2002. http://www.downes.ca.

35

BIBLIOGRAPHY 36

[EF96a] P. Eades and Q. Feng. Multilevel visualization of clustered
graphs. In Graph Drawing, vol. 1190 of LNCS, pages 101–112,
1996.

[EF96b] P. Eades and Q. Feng. Orthogonal grid drawing of clustered
graphs. Technical Report 96-04, The University of Newcastle,
Australia, 1996.

[EF97] P. Eades and Q. Feng. Drawing clustered graphs on an ortho-
gonal grid. In Graph Drawing, pages 146–157, 1997.

[EFLN97] P. Eades, Q. Feng, X. Lin, and H. Nagamochi. Straight-
line drawing algorithms for hierarchical graphs and clustered
graphs. Technical Report 98-03, The University of Newcastle,
Australia, 28 1997.

[EFN99] P. Eades, Q. Feng, and H. Nagamochi. Drawing clustered
graphs on an orthogonal grid. Journal of Graph Algorithms
and Applications, 3(4):3–29, 1999.

[EH00] P. Eades and M. L. Huang. Navigating clustered graphs using
force-directed methods. J. Graph Algorithms and Applications:
Special Issue on Selected Papers from 1998 Symp. Graph Draw-
ing, 4(3):157–181, 2000.

[FEC95a] Q. Feng, P. Eades, and R. F. Cohen. Clustered graphs and
c-planarity. Technical report, The University of Newcastle,
Australia, 1995.

[FEC95b] Q. Feng, P. Eades, and R. F. Cohen. Planar drawing of clus-
tered graphs. Technical report, The University of Newcastle,
Australia, 1995.

[Fek04] J. D. Fekete. The infovis toolkit, 2004. INRIA Futurs/LRI.

[Fen01] D. Fensel. Ontologies: A Silver Bullet for Knowledge Manage-
ment and Electronic Commerce. Springer, 2001.

[GHS04] N. Gibbins, S. Harris, and M. Schraefel. Applying mspace in-
terfaces to the semantic web. Technical report, University of
Southampton, UK, 2004.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-completeness. W. H. Freeman,
New York, 1979.

BIBLIOGRAPHY 37

[GJ83] M. R. Garey and D. S. Johnson. Crossing number is
NP-Complete. SIAM J. Algebraic Discrete Methods, 4(3):312–
316, 1983.

[GKNV93] E. R. Ganser, E. Koutsofios, S. C. North, and K. P. Vo. Tech-
nique for drawing directed graphs. IEEE Transactions on Soft-
ware Engineering, 19:214–230, 1993.

[GPCFL04] A. Gomez-Perez, O. Corcho, and M. Fernandez-Lopez. Ontolog-
ical Engineering : with examples from the areas of Knowledge
Management, e-Commerce and the Semantic Web. Springer,
2004.

[graa] GraphML. http://graphml.graphdrawing.org/.

[grab] GraphViz. http://www.graphviz.org.

[HC00] W. Hodgins and M. Conner. Everything you wanted to know
about learning objects but were afraid to ask. LineZine, 2000.
http://www.linezine.com/2.1/features/wheyewtkls.htm.

[HCL05] J. Heer, S. K. Card, and J. A. Landay. Prefuse: a toolkit for
interactive information visualization, 2005.

[HE] W. Huang and P. Eades. How people read graphs.

[HE01] M. L. Huang and P. Eades. A fully animated interactive system
for clustering and navigating huge graphs. In Proc. 6th GD,
pages 232–246, 2001.

[HK01] J. Han and M. Kamber. Data Mining: Concepts and Tech-
niques. Academic Press, 2001.

[HMM00] I. Herman, G. Melançon, and M. S. Marshall. Graph visual-
ization and navigation in information visualization: A survey.
IEEE Transactions on Visualization and Computer Graphics,
6(1):24–43, 2000.

[HMS01] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining.
MIT Press, Cambridge, 2001.

[HT74] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. Jour-
nal ACM, 21(4):549–568, 1974.

BIBLIOGRAPHY 38

[IEE02] IEEE. IEEE standard for learning object metadata -
IEEE 1484.12.1-2002, 2002. http://standards.ieee.org.

[ili] Ilias. http://www.ilias.de.

[Inc05] Thinkmap Inc. Thinkmap sdk v.2.6, technical whitepaper,
2005.

[JM96] M. Jünger and P. Mutzel. Maximum planar subgraphs and nice
embeddings: Practical layout tools. Algorithmica, 1(1):1–25,
1996. special issue on Graph drawing, edited by G. Di Batista.

[Kri02] R. Kristoöfl. Evaluation von learning management syste-
men. Technical report, Bundesministeriums für Bildung, Wis-
senschaft und Kultur, Österreich, 2002.

[MBA03] T. Murray, S. Blessing, and S. Ainsworth, editors. Authoring
Tools for Advanced Technology Learning Environments : To-
ward Cost-Effective Adaptive, Interactive and Intelligent Edu-
cational Software. Springer, 2003.

[McG04] R. McGreal. Learning objects: A practical definition. Inter-
national J. of Instrutional Technology and Distance Learning,
1(9), 2004. http://itdl.org/Journal/Sep 04/index.htm.

[MELS95] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjust-
ment and the mental map. J. Visual Lang. Comput., 6(2):183–
210, 1995.

[MHT93] K. Miriyala, S. W. Horick, and R. Tamasia. An incremental
approach to aesthetic graph layout. In Internat. Workshop on
Computer-Aided Software Engineering, 1993.

[MNKF90] S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa.
Crossing minimization in linear embeddings of graphs. IEEE
Transactions on Computers, 39(1):124–127, 1990.

[moo] Moodle. http://moodle.org.

[msp] mSpace. http://mspace.fm.

[Mut95] P. Mutzel. A polyhedral approach to planar augmentation and
related problems. In ESA, pages 494–507, 1995.

BIBLIOGRAPHY 39

[Pas] University Passau. Ein editor für hierarchisch geschachtelte
graphen. http://www.infosun.fmi.uni-passau.de/VisnaCom/.

[PST97] A. Papakostas, J. M. Six, and I. G. Tollis. Experimental and
theoretical results in interactive graph drawing. In Graph Draw-
ing 96, pages 371–386, 1997.

[QH00] C. Quinn and S. Hobbs. Learning objects and instructional
components. Educational Technology and Society, 3(2), 2000.
http://ifets.ieee.org/periodical/vol 2 2000/.

[Rai] M. Raitner. Visual navigation of compound graphs.
http://citeseer.ist.psu.edu/708344.html.

[RT81] E. Reingold and J. Tilford. Tider drawing of trees. IEEE Trans-
actions on Software Engineering, 7:223–228, 1981.

[SCO02] SCORM. Sharable content object reference model 2004,
2nd Edition, 2002. http://www.adlnet.org.

[SM91] K. Sugiyama and K. Misue. Visualization of structural informa-
tion: Automatic drawing of compound digraphs. IEEE Trans-
actions on Systems, Man and Cybernetics, 21(4):876–892, 1991.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual
understanding of hierarchical systems. IEEE Transitions on
Systems, Man and Cybernetics, pages 109–125, 1981.

[tre] Treepad. http://treepad.com.

[wik] Wikipedia. http://www.wikipedia.org.

[WM03] J. Wittmann and D. P. F. Moller. The content-graph as a basic
data structure to manage authoring and learning processes. In
International Conference on Advanced Learning Technologies
ICALT’03, 2003.

