
Computational complexity of two-dimensional
platform games

Michal Forǐsek

Comenius University, Bratislava, Slovakia
forisek@dcs.fmph.uniba.sk

Abstract. We analyze the computational complexity of various two-
dimensional platform games. We identify common properties of these
games that allow us to state several meta-theorems: general constructions
that allow us to identify a class of these games for which the set of
solvable levels is NP-hard, and another class for which the set is even
PSPACE-hard. Notably CommanderKeen is shown to be NP-hard, and
PrinceOfPersia is shown to be PSPACE-complete.
We then analyze the related game Lemmings, where we show that an as-
sumption made by Cormode in [3] is false. We construct a set of instances
which only have exponentially long solutions. Thereby we invalidate Cor-
mode’s proof that the general version of the Lemmings decision problem
is in NP. We then augment our construction to only include one en-
trance, which makes our instances perfectly natural within the context
of the original game.

1 Overview

The area of two-player combinatorial games, and one-player games and puzzles
has already been well researched. The earliest mathematical results are more
than a century old (e.g., the analysis of the game NIM 1 [1]). The most important
mathematical results related to two-player combinatorial games are the Sprague-
Grundy theory [18, 8] and Conway’s surreal numbers [2].

In past few decades researchers returned to this area with a new point of
view: investigating the computational complexity of these puzzles and games. It
turned out that almost all “interesting” puzzles and games are hard – assuming
that P 6= NP there is no efficient algorithm to solve/play them optimally. Among
the most important results are the proofs that many of the two-player games are
EXPTIME-complete (e.g., the generalizations of Go and Checkers to an n × n
board, [15, 16]), and many single-player puzzles are either PSPACE-complete
(e.g., solving Sokoban [4]) or NP-complete (e.g., checking whether a Minesweeper
configuration is valid [10]). For more of these results, we recommend one of the
survey papers [11, 6, 7].

1 A convention for easier reading of this article: Throughout the entire article,
italics (SomeGame) are used for the names of actual games, and small capitals
(SomeGame) are used for the names of the underlying decision problems.

In Section 2 of this article we analyze the computational complexity of a class
of previously ignored single-player games: two-dimensional platform games.

One of the already researched games is the game Lemmings, initially ad-
dressed by Cormode [3] and later by Spoerer [17]. In Section 3 we continue in
the analysis of this game, disproving an assumption made by Cormode, and
thereby invalidating his proof that Lemmings is in NP.

2 Hardness of 2D platform games

When researching the computational complexity of a given puzzle, we usually
expect the puzzle to be hard – after all, the puzzles are designed with the goal to
challenge the solver and to push her cognitive processes to the limit. However,
when we turn to computer games, not all of them are puzzles. Many other games
are perceived as simple in terms of necessary thinking. An example of such a set
of games are the 2-dimensional platform games. In this section we will take a
closer look at the computational complexity of these games, and surprisingly we
will show that many of these games are actually very difficult to solve in general.

For many platform games we will prove that the set of all solvable instances
(levels) is difficult: in some cases NP-hard, in some cases even PSPACE-hard.
We will now define 2-dimensional platform games, identify a set of common
features they exhibit, and then prove that some subsets of these features imply
that solving the game is difficult.

A 2-dimensional platform game is a single-player game in which the player
sequentially solves a set of levels. Each level is represented by a 2-dimensional
map representing a vertical slice of a virtual world.2 The player’s goal is to
move her avatar (i.e., the game character controlled by her) from its starting
location into the designated final location. The player controls the avatar by
issuing simple commands (step, jump, climb up/down, etc.), usually by pressing
keys or buttons of an input device. Within the game world, the avatar is affected
by some form of gravity. As a consequence the maximum jump height is limited.

Additionally, many of these games share the following features:
– long fall: The height of the longest safe fall (that does not hurt the avatar)

is larger than the maximum jump height.
– opening doors: The game world may contain a variable number of doors

and suitable mechanisms to open them.
– closing doors: The game world contains a mechanism to close doors, and

a way to force the player to trigger such a mechanism.
– collecting items: The game world contains a set of items that have to be

collected.
– enemies: The game contains enemy characters that must be killed or avoided

in order to solve the level.

We will now show that some of these features are easy from the algorithmic
point of view, but others imply that solving the game automatically is hard
2 The world usually consists of horizontal platforms, hence the name “platform game”.

– regardless of other details of the particular game. These results can be seen
as “meta-theorems”: for any particular game we can take the construction and
adjust it to the details of the particular game.

Meta-theorem 1. A 2D platform game where the levels are constant and there
is no time limit is in P, even if the collecting items feature is present.

Proof. The level and the set of allowed movements of the avatar uniquely deter-
mine a directed reachability graph. In this graph we label the vertices that cor-
respond to locations of items. Additionally, we execute two depth-first searches
to determine the set of vertices that are both reachable from the entrance and
allow us to reach the exit. If there is a labeled vertex that is not in this set,
we reject. Otherwise we drop the vertices that are not in the reachable set and
then contract each strongly connected component into a single vertex, preserv-
ing labels. We accept iff all the labeled vertices in the resulting DAG lie on a
single path from the entrance to the exit. This can be verified by considering the
labeled vertices in topological order and verifying reachability for each adjacent
pair. The algorithm is linear in the instance size if implemented properly.

Meta-theorem 2. A 2D platform game where the collecting items feature is
present and a time limit is present as a part of the instance is NP-hard.

Proof. Itai et al. in [9] prove that the set of grid graphs with Hamilton cycles
is NP-complete. This problem can be reduced to solving our platform game as
follows: Given a grid graph G, locate the leftmost of its topmost vertices and call
it u. The vertex u has degree at most 2. If this degree is less than 2, we reject.
(I.e., produce an unsolvable instance of our game and terminate.) Otherwise,
let v be the right neighbor of u. Obviously the edge uv must be a part of every
Hamilton cycle in G. Hence there is a Hamilton cycle in G iff there is a Hamilton
path that starts at u and ends at v. We now design the level in such a way that
the map of the level corresponds to G. We place an item into each location that
represents a vertex of G, except for u and v. We place the level entrance at u,
the level exit at v, and set the time limit to α(|VG| − 1), where α is the time
needed to travel between any two adjacent locations.

Meta-theorem 3. Any 2D platform game that exhibits the features long fall
and opening doors is NP-hard.

Proof. We will show how to reduce 3-Cnf-Sat to such a game. The main idea
of the proof is that the door opening mechanism can be used for a non-local
transfer of information. Given an instance of 3-Cnf-Sat, we can construct an
instance of the game as follows:

The instance will be divided into two parts: the key part, where the avatar
starts, and the door part it reaches after exiting the key part. The door part will
be a vertical concatenation of door gadgets (Figure 1 left), each corresponding
to a single clause in the 3-Cnf-Sat instance. The door gadget for the clause
cn ≡ (ln,1 ∨ ln,2 ∨ ln,3) contains three doors labeled (n, l1), (n, l2), and (n, l3).

The key part will be a vertical concatenation of variable gadgets (Figure
1 right). Each variable gadget will correspond to a single variable used in the
3-Cnf-Sat instance. For the variable xi the keys represent mechanisms that
unlock doors. The keys in the left part unlock the doors (n, xi) for all n, and the
keys in the right part unlock the doors (n,¬xi) for all n.

Fig. 1: The door gadget (left) and the variable gadget (right).

It is obvious that each valid solution of the 3-Cnf-Sat instance corresponds
to a valid way how to traverse the level. On the other hand, if the vertical unit
size of our gadgets exceeds the maximum jump height, we can easily verify that
the player has no other reasonable choice. Finally, the game level can easily be
created from the 3-Cnf-Sat instance in polynomial time, hence this is a valid
reduction.

Note 1. Both gadgets in Figure 1 were designed so that no jumping is necessary
anywhere in the final instance. Hence Meta-theorem 3 does also apply to games
that do not include any jumping. For example, it can be extended to dungeon
exploration games that involve one-way trapdoors to lower levels.

Corollary 1. The following famous 2D platform games are NP-hard:
Commander Keen, Crystal Caves, Secret Agent, Bio Menace (switches that

activate moving platforms), Jill of the Jungle, Hocus Pocus (switches that toggle
walls), generalized3 Duke Nukem (keycards), Crash Bandicoot, Jazz Jackrabbit
2 (crates that activate sets of new floor tiles once broken).

2.1 Prince of Persia is PSPACE-complete

In this section we state our main meta-theorem. In this case, instead of a generic
proof we opt to present the construction for the popular platform game Prince
of Persia.

Meta-theorem 4. Any 2D platform game that exhibits the features long fall,
opening doors and closing doors is PSPACE-hard.

Proof. The proof is a straightforward generalization of the proof presented below.

We will now define the PrinceOfPersia decision problem. An instance
of this problem is a 2-dimensional map of the level, with some additional in-
formation. On the map, each cell contains one of a fixed set of tiles. For our
3 The original only has keycards of 4 colors and it is in P. From Meta-theorem 1 it

follows that the set of perfectly solvable Duke Nukem levels is in P as well.

construction, we need the following types: {nothing, entrance, exit, floor tile,
floor tile with a pressure plate, door}.4 Additionally, the doors have unique la-
bels from some set D, and each pressure plate is assigned a single label: “+d” if
it opens door d, “-d” if it closes the door d. Multiple plates may open/close the
same door.

The avatar (called Prince) can move in the following ways:5 single step left
/right; jump over at most three empty tiles left/right; climb to a floor tile dia-
gonally above, if the above tile is empty; and descend into a pit ≤ 2 tiles deep.

Theorem 1. The set PrinceOfPersia of solvable instances of the game de-
fined above is PSPACE-hard.

Proof. To prove that PrinceOfPersia is PSPACE-hard, we reduce the word
problem for linear bounded automata WordLBA to our problem.

Consider an instance (M,w) of WordLBA with M = (Q,Σ, Γ, δ, q0, L,R, F)
and |w| = n. W.l.o.g. we may assume that the input and work alphabets are
binary, i.e., Σ = Γ = {0, 1}. Q is the set of states, F ⊆ Q is the set of final
states. The symbols L and R are the left and right endmarker, respectively, δ is
the non-deterministic transition function, and w is the input word.

We will now construct an instance of PrinceOfPersia that will be solvable
if and only if M accepts w. The general layout of our instance is shown in Figure
2. The instance will consist of several gadgets. The gadgets will be designed in
such a way that the only allowed way in which the avatar will be able to navigate
the level will correspond to arrows in Figure 2.

Fig. 2: Layout of gadgets in the PrinceOfPersia instance.

Our instance will contain several sets of doors that will represent various
parts of the given word and LBA:
– the “accept” door a,
– two sets of “head location” doors {hi, hi | 0 ≤ i ≤ n+ 1},
– a set of “stored symbol” doors {si,j | 1 ≤ i ≤ n, j ∈ {0, 1}},
– a set of “δ-function state” and “δ-function symbol” doors: {qπ, xπ | π ∈ δ},
– a set of “head movement” doors {mi,j | 0 ≤ i ≤ n+ 1, − 1 ≤ j ≤ 1},
– and a set of “write symbol at location” doors {wi,j | 1 ≤ i ≤ n, j ∈ {0, 1}}.

The gadgets shown in Figure 2 will be constructed in such a way that the
following invariant holds for each x: Let S be the set of doors open at the moment
when the avatar enters the ReadSymbol gadget for the x-th time. Then there is
a configuration (q, w, k) of M such that:

– (q, w, k) is reachable in x− 1 steps from (q0, w, 1),
4 The actual game includes other tiles as well, such as walls and spikes.
5 Again, the description is simplified, but the differences do not matter for our proof.

– out of the head location doors, only doors hk and hk may be open,
– out of the stored symbol doors, only doors si,wi

may be open, for all i,
– out of the state doors qπ, only doors that correspond to q may be open,
– all other doors, including the accept door a, are closed.

From this invariant it immediately follows that the only way in which the avatar
can solve the level is by simulating an accepting computation of M . The only
thing left to prove is to show how to construct the individual gadgets that will
enforce the above invariant.

Fig. 3: Left: the set of four tiles we use – floor, pressure plate, door, and entrance/exit.
Center and right: helper gadgets: multiple choice and forced activation of a plate.

Figure 3 shows the set of tiles we will use in our constructions, and the
construction of two helper gadgets. The one in the center (denoted MC below)
forces the avatar to choose one of the available paths, without the option to
return later and change the choice. The right one (denoted FA(x)) forces the
avatar to activate the pressure plate −x. This gadget will be used to enforce
closing doors. Without the pressure plate this gadget can be used as a simple
one-way wire (denoted by an arrow outside of a box). Using these helper gadgets
we will now construct the gadgets in Figure 2.

Three of the gadgets are simple. The Start gadget contains pressure plates
that open doors corresponding to the configuration (q0, w, 1). The Finish gadget
contains the door a, blocking the way to the level exit. The Cleanup gadget
consists of a series of FA gadgets that close all of the doors mi,j , wi,j , and xπ.

Fig. 4: Gadget parts: ReadSymbol (left), ChooseStep (right)

The ReadSymbol gadget contains a MC gadget with n+ 2 outputs. Each of
these outputs starts with one of the hi doors. The rest of the gadget for one hi
door is shown in Figure 4 on the left. (Doors h0 and hn+1 are special, their parts
do not contain the symbol doors.)

Clearly, if the avatar wants to traverse this gadget, it must follow a path that
corresponds to the LBA’s current head location and the symbol underneath the
head. On this path, the avatar is allowed to open any or all of those xπ doors
that correspond to the current symbol.

The ChooseStep gadget contains a MC gadget with |δ| outputs, each of them
corresponding to one element π ∈ δ. When crossing this gadget the avatar is

forced to choose one of the (possibly multiple) paths that correspond to elements
of δ for the LBA’s current state and read symbol. If the new chosen state is final,
the avatar is allowed to open the door a. Otherwise the avatar is forced to enter
a gadget shown in Figure 4 on the right. When crossing this gadget the avatar
is forced to close all open qπ doors, and then allowed to open those doors qπ,
mi,a and wi,b that correspond to the new state, symbol b to write, and head
movement a.

Fig. 5: Gadget part: WriteAndMove

The WriteAndMove gadget contains a MC gadget with n+ 2 outputs. Each
output starts with one of the hi doors, which forces the avatar to pick a path
corresponding to the old head location. The rest of the gadget for a single output
is shown in Figure 5.

In the first part (omitted for head positions 0 and n+ 1) the avatar crosses
the correct write symbol door wi,b, closes the door si,1−b and opens si,b.

In the second part the avatar closes the current head location doors hi and
hi, crosses the correct movement door mi,a, and opens the new head location
doors hi+a and hi+a.

That concludes the construction. An example of a full instance constructed
in this way is in the appendix.

Note 2. In the original Prince of Persia game, there is an additional parameter
of the instance: the amount of steps T after which an open door starts to close.
Our construction can easily be modified to include this parameter, and it is even
possible to set T to a small value approximately equal to the map size by adding
a “refresh” block where the avatar can re-open any currently open door.

Corollary 2. PrinceOfPersia is PSPACE-complete.

Proof. Follows from Theorem 1, Savitch’s theorem that NSPACE=PSPACE,
and the obvious fact that PrinceOfPersia is in NSPACE.

3 Hardness of the Lemmings problem

One particular 2D game that is in many ways similar to our 2D platform games
from the previous section is the game Lemmings. Already in 1998 McCarthy [13]
mentions this game as a challenge for artifical intelligence. In [3] Cormode defines
the Lemmings decision problem and argues that this problem is NP-complete.
This claim is later repeated in [17] and it is conjectured that a variation of this
problem is NP-complete as well.

However, Cormode’s proof only holds for a restricted version of the Lem-
mings problem. This restriction is introduced on page 3 of [3] where an instance
is defined. One element of the instance is the time limit, which Cormode defines
as follows: “limit, the time limit, in discrete time units. For technical reasons,
we will insist that the time limit is bounded by a polynomial in the size of the
level. We conjecture that this restriction is unnecessary, by claiming that if it is
not possible to complete the level in time polynomial in the level size, then it is
not possible to complete the level at all.”

The “technical reasons” are, in fact, just one reason: Cormode’s proof that
Lemmings ∈ NP is trivial – guess the solution and verify it. This approach
obviously fails if the number of theoretically possible configurations is not poly-
nomial in the input size. Hence Cormode needs the restriction to artifically limit
the number of reachable configurations.

In this section, we show that Cormode’s conjecture is false by constructing a
class of solvable Lemmings instances of increasing sizes such that their shortest
solution length can not be bounded by a polynomial in the input size. We then
conclude that the general Lemmings problem is NP-hard, as proved by Cormode,
but so far we cannot tell whether it is in NP. The existence of instances with
only exponentially long solutions leads us to conjecture that the general version
of this decision problem is in fact not in NP.

3.1 Constructing the instances

In this section we construct a class of Lemmings instances for which the length of
the shortest correct solution is not polynomial in the input size. Our construction
is based on the idea of lemming synchronization – in order to solve the level,
events in different places will have to happen at the same time. And for our
instances, a suitable moment for this will only occur after an exponential number
of steps has elapsed.

To construct our instances, we will only need a very small subset of the
Lemmings universe: entrances, permeable walls, and an exit. The only lemming
skill we will use will be the digger.

We will build two types of gadgets: a release gadget, that will only be able to
release a lemming in certain points in time, and a synchronization gadget that
must be reached by all lemmings in (almost) the same moment in time. The
release gadget is shown in Figure 6 on the left, and the synchronization gadget
is shown in Figure 6 on the right.

Fig. 6: The release gadget (left) and the synchronization gadget (right).

Lemma 1. Let the release gadget be x steps wide. Assuming that no other lem-
ming can reach the gadget, the lemming inside must start digging at a time that
is an integer multiple of 2x in order to survive.

Proof. At time 0 the entrance releases a lemming, at time 1 the lemming reaches
the ground and starts walking towards the right. Without any interaction the
lemming will keep on bouncing off walls, and reenter the same state every 2x
ticks. In order to save it we have to give it the digger skill sooner or later. The
bottom part of the gadget is in such a height that the lemming must dig in
the leftmost place, otherwise the fall will kill it. Additionally, the lemming must
be walking in the correct direction (left to right), otherwise it falls to its death
immediately after reaching the bottom part of this gadget. This configuration
will appear precisely at ticks that are positive integer multiples of 2x.

Lemma 2. For a single lemming entering the synchronization gadget, the only
way to survive is to dig at B and leave the gadget at D.

Proof. If the lemming does not dig anywhere, it will reach the right end of the
top ledge and fall to its death. The only safe place where to dig is point B,
anywhere else the dig ends in a fall that is too high.

Lemma 3. If for each lemming the only way to the exit leads through the point
A of a single synchronization gadget, then the lemmings can only survive if all
other lemmings arrive at A at 2 to 8 ticks after the first one.

Proof. Consider the first lemming that arrives at A. From Lemma 2 it follows
that this lemming has to start digging at B. As soon as this lemming digs a
hole that is deep enough, no other lemming will be able to cross this gadget –
regardless of what it does, it will fall and die somewhere. Hence there is only one
way how the other lemmings may survive: they must arrive during the constant
amount of time when the first lemming digs – and enter the hole below B while it
is shallow enough. On the other hand, a delay of at least 2 ticks is necessary. The
hole must be already deep enough so that the other lemmings can not escape it.

Note that when the digger finishes the hole, some of the other lemmings fall
out of it walking in the opposite direction. This is fixed by the wall at C that
turns these lemmings around.

Given an integer n, we will now create an instance In of Lemmings as follows:
The only skill available will be the digger, and the number of times it can be
used will be n+ 1. We will have n lemmings, each of them starting in a separate
release gadget. The lengths of the release gadgets will be 5p1, . . . , 5pn, where pi
is the i-th prime number. The outgoing paths from these gadgets will be merged
together in such a way that the number of steps from each of the gadgets to
the common meeting point will be the same – except for one gadget that will
be two steps closer. The path from the meeting point will lead onto point A of
a single synchronization gadget, and the synchronization gadget will output the
lemmings from point D straight to the exit.

Figure 7 shows the instance I4. The release gadgets have lengths 10, 15, 25,
and 35. The smallest release gadget is shifted 2 steps to the right – the lemming
from this gadget will be the one digging at the synchronization gadget.

Lemma 4. Let pn# be the primorial, i.e., the product of the first n primes.
Then nbn/2c ≤ pn# ≤ 2 · n2n.

Proof. Obviously follows from the bounds on pn proved in [14].

Fig. 7: The complete instance I4.

Theorem 2. Each instance In is solvable. The shortest number of ticks in which
In can be solved exceeds 10nbn/2c.

Proof. In order to save all lemmings in In they all have to start digging out
of their release gadgets at the same time. To prove this, assume the contrary.
The release gadget lengths are multiples of 5, so by Lemma 1 the period of each
lemming in the gadget is a multiple of 10. Hence if lemmings do not start digging
at the same time, then the last lemming will leave the release gadget at least 10
ticks after the first one. Then the last lemming will arrive at A at least 8 ticks
after the first one, and by Lemma 3 it will die, which is a contradiction.

Hence the lemmings must start digging at some time T that is a multiple of
the period of each lemming. By the Chinese Remainder Theorem, the smallest
such T is T = 10pn#, and by Lemma 4 we have T > 10nbn/2c.

We can easily verify that once all lemmings start digging at time T , the rest
of the solution is short and unique.

Theorem 3. The instance In can be described by Θ(n2 log n) bits.

Proof. The height of the map is Θ(n), the width is Θ(n + pn) = Θ(pn) =
Θ(n log n), thus the entire map can be described using Θ(n2 log n) bits. We need
to set a suitable time limit for the level. Clearly, the time limit 10pn#+47n log n+
47 is sufficient. By Lemma 4 this number is O(n2n), hence O(log(n2n)) =
O(n log n) bits are sufficient to encode it. All the remaining information (the
skills vector, the total number of lemmings, and the number of lemmings to
save) can be stored in O(n) bits, even if using unary coding.

Corollary 3. From Theorems 2 and 3 it follows that for the sequence of in-
stances {In}∞n=1 the length of the shortest solution grows exponentially in the
instances’ input sizes. Hence this sequence of instances is a counterexample to
Cormode’s proof that Lemmings ∈ NP.

Note 3. The above construction requires the player to do n actions at the same
time (giving each of the lemmings the digger skill to free it from the release
gadget). If we assume that the player can only make one action per tick, this is
easily fixed by moving release gadget x exactly x steps away from the meeting
point, for each x. In this situation the player’s actions must occur in immediately
consecutive steps.

Note 4. Both our construction and Cormode’s original proof of NP-hardness
involve multiple entrances. This is an unnatural construction, as most levels
in the original Lemmings games only have a single entrance that releases all
lemmings sequentially at a fixed rate. Below we prove that both results are true
for Lemmings instances with a single entrance.

3.2 The distribution gadget

Our proof is based on the construction of a distribution gadget that takes a
stream of lemmings (such as the one leaving a single entrance) and breaks it
into individual lemmings, each on a separate path. The construction uses a
method similar to the one used by the first lemming in the synchronization
gadget: digging in a suitable place may decrease the height of the lemming’s fall.

The distribution gadget for n lemmings is a generalization of the one shown
in Figure 8. When employing this gadget we need to add n additional diggers to
the skill vector, and create a separate exit path for each of the lemmings. Note
that the bottom part of the gadget is placed exactly in such a height that a fall
from the top of the top ledge would kill a lemming, whereas the fall from the
bottom of the ledge is safe.

Fig. 8: The distribution gadget for four lemmings.

Theorem 4. The only way in which all lemmings survive the distribution gadget
is that the player makes each of them dig above one of the exit points.

Proof. A lemming that is never assigned the digger skill will fall to its death –
either at the end of the top ledge, or into a hole dug by some previous lemming.
Hence each lemming must dig in order to survive, and there are precisely n places
where a lemming can dig and survive the resulting fall. Note that the places for
digging must be assigned right to left, i.e., the first lemming to get out of the
entrance must be the one reaching point 1 in Figure 8.

Corollary 4. In our construction of an instance In, we can start by using the
distribution gadget. Then we can easily construct paths that will lead the sepa-
rated lemmings to enter each of the individual release gadgets from above. Hence
even if we restrict Lemmings to instances with only one entrance, there will still
be instances with exponentially long solutions only.

4 Conclusions

We have shown a general point of view on platform games that allowed us to find
two classes of NP-hard platform games and one class of PSPACE-hard platform
games. These classes include many well-known examples.

For the Lemmings problem, we have disproved Cormode’s original assump-
tion by showing that there are instances with only exponentially long solutions.
Our construction works even if we limit ourselves to instances with only one
entrance.

5 Open problems for further research

Clearly, Lemmings ∈ PSPACE, as the number of reachable configurations is
always at most exponential in the input size. An open question is whether Lem-
mings can actually be shown to be PSPACE-complete.

Our intuition suggests that this may indeed be the case. One observation is
that the miner skill together with a combination of permeable and impermeable
terrain can be used to free a trapped lemming from the outside. This may be ex-
ploited to “store” lemmings in various part of the level, use the presence/absence
of these lemmings as memory, and have one other lemming free them when the
memory state needs to be changed.

As for the general research of the computational complexity of games and
puzzles, we are convinced that our approach from Section 2 is the correct direc-
tion for the future. As we documented in the overview, there are already many
results on the hardness of individual puzzles. What we now need to discover
are patterns in these results. What are the common features that make games
and puzzles hard? Can then these observations help us analyze other games and
puzzles? The recent Constraint Logic framework by Demaine and Hearn [5] is
probably one of the first steps in this direction.

The topic of platform games is not exhausted in this article. While most of
the games we examined are either obviously in P or covered by one of our meta-
theorems, there are some exceptions. Notably, so far we ignored the presence
of enemies. We expect that in some cases the presence of enemies can make
the games hard to solve. For instance, if enemies are present, the number of
possible configurations may become exponential in the input size. If the enemies
must be avoided, it should be possible to create instances that require enemy
synchronization in order to be solvable, and this can force the solution to be
exponentially long.

References

1. Charles L. Bouton. Nim, a game with a complete mathematical theory. Annals of
Mathematics, 3:35–39, 1901/02.

2. John Horton Conway. On Numbers and Games. Academic Press, 1976.
3. Graham Cormode. The Hardness of the Lemmings Game, or Oh no, more NP-

Completeness Proofs. In Proceedings of Third International Conference on Fun
with Algorithms, pages 65–76, 2004.

4. Joseph Culbertson. Sokoban is PSPACE-complete. In Proceedings of the Interna-
tional Conference on Fun with Algorithms, pages 65–76, 1998.

5. Erik D. Demaine and Robert A. Hearn. Constraint logic: A uniform framework
for modeling computation as games. In Proceedings of the 23rd Annual IEEE
Conference on Computational Complexity, 2008.

6. Erik D. Demaine and Robert A. Hearn. Playing games with algorithms: Algorith-
mic combinatorial game theory. In Michael H. Albert and Richard J. Nowakowski,
editors, Games of No Chance 3, volume 56 of Mathematical Sciences Research
Institute Publications, pages 3–56. Cambridge University Press, 2009.

7. David Eppstein. Computational Complexity of Games and Puzzles, 2009. http:

//www.ics.uci.edu/~eppstein/cgt/hard.html.
8. P. M. Grundy. Mathematics and games. Eureka, 2:6–8, 1939.
9. Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton Paths

in Grid Graphs. SIAM Journal on Computing, 11(4):676–686, 1982.
10. Richard Kaye. Minesweeper is NP-complete. Mathematical Intelligencer, 22(2):9–

15, 2000.
11. G. Kendall, A. Parkes, and K. Spoerer. A Survey of NP-Complete Puzzles. Inter-

national Computer Games Association Journal, 31(1):13–34, 2008.
12. David Lichtenstein. Planar Formulae and Their Uses. SIAM Journal on Comput-

ing, 11(2):329–343, 1982.
13. J. McCarthy. Partial formalizations and the Lemmings game, 1998. Technical

report, Stanford University, Formal Reasoning Group.
14. Guy Robin. Estimation de la fonction de Tchebychef θ sur le k-ième nombre

premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n.
Acta Arith., 42(4):367–389, 1983.

15. J. M. Robson. The complexity of Go. In Proceedings of the IFIP 9th World
Computer Congress on Information Processing, pages 413–417, 1983.

16. J. M. Robson. N by N Checkers is EXPTIME complete. SIAM Journal on Com-
puting, 13(2):252–267, 1984.

17. Kristian Spoerer. The Lemmings Puzzle: Computational Complexity of an Ap-
proach and Identification of Difficult Instances. PhD thesis, 2007.

18. R. P. Sprague. Ueber mathematische Kampfspiele. Tohoku Mathematical Journal,
41:438–444, 1935/36.

A Example construction for Prince of Persia

The following is a complete level for Prince of Persia, representing the instance
(M,w), where |w| = 2 and M is the smallest possible LBA with the δ-function
given below, q0 being the starting state, and q2 the only final state of M .

The δ-function: δ(q0, 0) = {(q0, 0, 1)}, δ(q0, 1) = {(q1, 0, 1)}, δ(q0, R) =
{(q1, R,−1)}, and δ(q1, 0) = {(q2, 1, 0)}.

The level is broken into two parts to make it fit on a single page. The places
marked by a star and a hexagon should be attached to form the correct picture.
Door and pressure plate labels were intentionally omitted, they can easily be
reconstructed from the description in the article, if needed.

