

Comenius University, Bratislava Faculty of Mathematics, Physics and Informatics Departure of Computer Sience

Branislav Katreniak, Jana Katreniaková

On the Inability of Gathering by Asynchronous Mobile Robots with Initial Movements

Advisor: Doc. Rastislav Kráľovič

Bratislava

1. Model definition

- Comunity of robots
- Anonymous
- Fully asynchronous
- No common origin
- No common unit of distance
- No common sense of direction
- No direct communication

1.1 Robots

- Sensors to detect the instantaneous positions of other robots
- Infinitely small (points)
- Unbounded Euclidean plane
- Never colide, can occupy the same location
- Observe, compute, move with infinite precision
- Deterministic
- Oblivious

1.2 Scheduling

The cycle of robots' lives

- Wait
- Look
- Compute
- Move
- Each phase can take arbitrary long, but finite time
- No state preserved from previous cycles

1.3 Traditional initialization

 All robots are initialialy not moving
Algorithms able to prevent certain configurations
Robots cannot be ever pushed

1.4 Initialial movements

- Robots are initialy moving to arbitrary point
- Algorithms must solve all configuration
- Robots can be pushed few times

2. Gathering problem

- Given a group of robots in the plane
- Arrange them at one point on the plane in finite time
- Solvable for zero initial movements with multiplicity detection for n>2

2.1 Inability of gathering

Force robots to repeat two similar configurations
Repeat the scheduling infinitely

Regular circle snapshots

 Robots must choose the center
If not, similar snapshots can be achieved

Pattern construction

Pattern simulation

Conclusions

