
Overview
Everything but coding

Coding

Implementation Techniques
and other stuff for practical contests

Michal misof Forišek

Department of Theoretical Computer Science
Faculty of Mathematics, Physics and Informatics

Comenius University
Bratislava, Slovakia

February 9, 2010

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Talk overview

A collection of tips and tricks:

editing

compiling

testing

debugging

implementation

. . . and more

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Choose your tools

Programming contests are not only about solving problems.

Hardest part: statement → solution idea.

Your goal: spend as much time as possible on the hardest part
In other words: spend as little time as possible on everything else.

What helps: good tools, a good strategy, lots of practice

Language choice for contests: C++ is the winner

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Editor

Does the editor matter?
All editors are more or less the same when you write code.
The difference appears once you need to edit it.

Essentials
syntax highlighting

automatic indentation

Bonuses
quick and simple searching, replacing, indentation, etc.

interaction with the compiler

vim does all of this and more – run vimtutor to get a taste

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Compiler: Use warnings!

warnings.cc
#include <iostream>
using namespace std;

int compute() {
int a,b;
cin >> a;
if (a=0) {
cout << ”zero” << endl;
return b;

} else {
cout << ”non-zero” << endl;

}
}
int main() {
if (compute()) cout << ”success” << endl;

}

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Compiler: Use warnings!

Compiler output without warnings

(That is, absolutely none!)

Compiler output with g++ -W -Wall warnings.cc
warnings.cc:7: warning: suggest parentheses

around assignment used as truth value

warnings.cc:13: warning: control reaches end

of non-void function

warnings.cc:9: warning: ‘b’ may be used

uninitialized in this function

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Compiler: Use warnings!

Compiler output without warnings

(That is, absolutely none!)

Compiler output with g++ -W -Wall warnings.cc
warnings.cc:7: warning: suggest parentheses

around assignment used as truth value

warnings.cc:13: warning: control reaches end

of non-void function

warnings.cc:9: warning: ‘b’ may be used

uninitialized in this function

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

The bash shell is your friend

Input/output redirection

./my_program < task.in > task.my_out

Input straight from the command line
./my_program <<< "5 1 2 3 4 5"

Very useful e.g. when writing generators

Check whether your output is correct
diff task.my_out task.correct

(Learn to read diff’s output
or use “diff -y” to see both files side by side.)

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

The bash shell is your friend

For-cycles, variables, wildcards
for i in a b c ; do echo $i ; done

for i in *.in ; do echo $i ; done

for i in *.in ; do ./my_program < $i ; done

Sequences
seq $start [$end [$step]]

for example:
seq 47 prints 1 to 47
seq 1 12 3 prints 1 4 7 10

Expressions
echo $((4 + (7 * 1)))

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

The bash shell is your friend

A complete script testall.sh
#!/bin/bash

for infile in *.in ; do

echo $infile

name=‘basename $infile .in‘

outfile=$name.out

myfile=$name.my

time ./my_program < $infile > $myfile

diff -q $myfile $outfile

done

Make it executable
chmod a+x testall.sh

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Debugging 1: the real deal

Knowing gdb or a frontent (such as ddd) may be an advantage.

Very simple usage
$ g++ error.cc -g -o error

$./error

Floating point exception

$ gdb ./error

(gdb) run

Starting program: /home/misof/SANDBOX/error

Program received signal SIGFPE, Arithmetic exception.

0x0000000000400946 in main () at error.cc:10

10 s += 100 / A[10];

(gdb) print A[10]

$1 = 0

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Debugging 2: asserts

assertions = checks that the data is still sane

Assertions in C++
#include <cassert>

...

int x = foo();

assert((x>=0) && (x<N));

. . . and the code is executed
assert: assert.cc:8: int main():

Assertion ‘(x>=0) && (x<N)’ failed.

asserts cost you nothing:
just add “#define NDEBUG” before “#include”s to disable them.

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Debugging 2: asserts

Assertions in FreePascal
{$C+}

var x : longint;

...

x := foo();

assert((x>=0) and (x<N));

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Debugging 3: debug outputs

Never delete debug outputs – just make them inactive!

Debug outputs using the preprocessor
x := foo();

#ifndef NDEBUG

cerr << ”x: ” << x << endl;

#endif

A handy macro
#ifdef NDEBUG

#define DEBUG(x)

#else

#define DEBUG(x) cerr << #x << ”: ” << (x) << endl;

#endif

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Avoid Copy&Paste like the Plague

Copy and Paste
one of the most frequent bug sources

produces long code:
hard to read, hard to modify

if you introduce a bug, it’s impossible to find

almost never necessary!

How to avoid it?
implement each functionality once, and once only

one option: wrap it in a function

another option: replace it with a loop

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Copy&Paste case study: Maze exploration

navigating a 4-connected maze
int dr[] = {-1, 0, 1, 0};

int dc[] = { 0, 1, 0, -1};

// generate all 4 cells reachable from (r,c):

for (int dir=0; dir<4; ++dir) {

int nr = r + dr[dir];

int nc = c + dc[dir];

...

}

// Note: (dir+1) % 4 is the next direction clockwise

knight moves?
int dr[] = {-2, -2, -1, -1, 1, 1, 2, 2};

int dc[] = {-1, 1, -2, 2, -2, 2, -1, 1};

for (int dir=0; dir<8; ++dir) ...

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Copy&Paste case study: Maze exploration

navigating a 4-connected maze
int dr[] = {-1, 0, 1, 0};

int dc[] = { 0, 1, 0, -1};

// generate all 4 cells reachable from (r,c):

for (int dir=0; dir<4; ++dir) {

int nr = r + dr[dir];

int nc = c + dc[dir];

...

}

// Note: (dir+1) % 4 is the next direction clockwise

knight moves?
int dr[] = {-2, -2, -1, -1, 1, 1, 2, 2};

int dc[] = {-1, 1, -2, 2, -2, 2, -1, 1};

for (int dir=0; dir<8; ++dir) ...

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Sentinels

Special cases are bad:
– you are forced to write more code
– you may make more bugs

An useful technique: sentinels
idea: add new data with extremal values
result: each original item is processed in the same way

Example #1
data: a sorted array

goal: find the number of unique elements

sentinels: add “∞” at the end

gain: one for-cycle with no special cases

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Sentinels

Example #2
data: a sorted array

goal: binary searching for many xs

sentinels:
add a “−∞” value at the beginning,
add a “∞” at the end

gain: easier binary search: x is always inside

Example #3
data: halfplanes

goal: compute their intersection

sentinels: start with a huge bounding box

gain: no infinity as a special case

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Sentinels

Example #4
data: a bitmap of a maze

goal: exploration

sentinels: add a row/column of walls at each side

gain: no need for checks like
if ((r>=0) && (r<R) && (c>=0) && (c<C)) ...

########

..#... #..#...#

#...#. ##...#.#

..#.#. ---> #..#.#.#

.##..# #.##..##

..##.. #..##..#

########

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Binary search

Binary search is easy:

int binary_search(const vector<int> &array, int value) {
// initialize pointers to the first and last element
int start = 0, end = array.size()-1;
// check whether value falls outside of the array
if (value < array[start]) return -1;
if (value > array[end]) return -1;
// while we have multiple choices, halve the interval
while (start != end) {
int middle = (start+end)/2;
if (array[middle] < value) start = middle; else end = middle;

}

if (array[start] == value) return start; else return -1;

}

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

NOT a binary search

int binary_search(const vector<int> &array, int value) {
int start = 0, end = array.size()-1;
if (value < array[start]) return -1;
if (value > array[end]) return -1;
while (start != end) {
int middle = (start+end)/2;
if (array[middle] < value) start = middle; else end = middle;

}

if (array[start] == value) return start; else return -1;

}

Does not even work for values actually present!
Example: array[]={0,10,20,30,40}, value=30
(start, end) : (0, 4)→ (2, 4)→ (2, 3)→ (2, 3)→ · · ·

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Half-open intervals

The previous example
bug type: ±1 errors
how to avoid: always see a clear invariant
one helpful technique: half-open intervals

What’s a half-open interval?

[a, b) = {x | a ≤ x < b}
Read: a is the first number inside, b the first one outside

Useful to learn: used e.g. in STL, in Python
in general, they lead to code with few ±1s

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Half-open intervals

Basic properties

Length: b − a (also the number of integers in range)
Natural representation of an empty range: [a, a).

For any c such that a < c < b we can split
interval [a, b) into [a, c) and [c , b).

Example: binary search
In the beginning:

make sure that array [a] ≤ value < array [b].

When to terminate:
as soon as b − a = 1: now a is the only candidate left

How to proceed if b − a > 1:
split [a, b) into [a, c) and [c, b) for c = (a+ b)÷ 2

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Half-open intervals

Basic properties

Length: b − a (also the number of integers in range)
Natural representation of an empty range: [a, a).

For any c such that a < c < b we can split
interval [a, b) into [a, c) and [c , b).

Example: binary search
In the beginning:

make sure that array [a] ≤ value < array [b].

When to terminate:
as soon as b − a = 1: now a is the only candidate left

How to proceed if b − a > 1:
split [a, b) into [a, c) and [c, b) for c = (a+ b)÷ 2

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Half-open intervals

Fixed binary search
int binary_search(const vector<int> &array, int value) {
// ensure the precondition
if (value < array[0]) return -1;

// set the bounds
int a = 0, b = array.size();

// do the search
while (b-a > 1) {
int c = (a+b)/2;
if (array[c] <= value) a=c; else b=c;

}

if (array[a] == value) return a; else return -1;

}

Note: we divided the array into a “good” and a “bad” part.
Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Half-open intervals

Prefix sums: the problem

You have: an unsorted array A[0..N − 1] of numbers
You want: quickly determine sum of any segment

Prefix sums: idea of the solution
(A[i] + · · ·+ A[j]) = (A[0] + · · ·+ A[j])− (A[0] + · · ·+ A[i − 1])

Prefix sums: the solution
Definition: Let S [i] = A[0] + · · ·+ A[i − 1].

Note: S [i] is the sum of elements of A with indices in [0, i).

Computation in O(N): S [0] = 0 and S [k + 1] = S [k] + A[k].

Sum of segment with indices in [a, b): simply S [b]− S [a].

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Half-open intervals

Prefix sums: the problem

You have: an unsorted array A[0..N − 1] of numbers
You want: quickly determine sum of any segment

Prefix sums: idea of the solution
(A[i] + · · ·+ A[j]) = (A[0] + · · ·+ A[j])− (A[0] + · · ·+ A[i − 1])

Prefix sums: the solution
Definition: Let S [i] = A[0] + · · ·+ A[i − 1].

Note: S [i] is the sum of elements of A with indices in [0, i).

Computation in O(N): S [0] = 0 and S [k + 1] = S [k] + A[k].

Sum of segment with indices in [a, b): simply S [b]− S [a].

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Half-open intervals

Prefix sums: the problem

You have: an unsorted array A[0..N − 1] of numbers
You want: quickly determine sum of any segment

Prefix sums: idea of the solution
(A[i] + · · ·+ A[j]) = (A[0] + · · ·+ A[j])− (A[0] + · · ·+ A[i − 1])

Prefix sums: the solution
Definition: Let S [i] = A[0] + · · ·+ A[i − 1].

Note: S [i] is the sum of elements of A with indices in [0, i).

Computation in O(N): S [0] = 0 and S [k + 1] = S [k] + A[k].

Sum of segment with indices in [a, b): simply S [b]− S [a].

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

STL: Intro

STL: the Swiss Army Knife for programming contests.

(Some weird things like those little scissors,
but several very useful tools.)

Template: code with a variable instead of a type.

Example code template
template<class T> T sumSquares(T a, T b) { return a*a + b*b; }

Three basic parts of STL
containers

algorithms

iterators

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

STL: Containers

A bunch of data structures for free
vector: a scalable array

set: a balanced binary tree

map: a sorted associative array

priority queue: a heap

list: a linked list

deque: a double-ended queue (very convenient!)

pair: an arbitrary ordered pair

string: a convenient class for strings

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

STL: Containers

Advantages of using STL containers
As efficient as possible – if you use the right one!

You do not reinvent the wheel

Less bugs

Shorter, more readable code

Less time spent on the implementation

BUT: you still have to understand what’s going on

Example: using a set
set<int> S;

for (int i=0; i<1234567; ++i) S.insert(i);

S.erase(7);

cout << S.count(47) << ” ” << S.size() << endl;

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

STL: Iterators

What’s an iterator?
An iterator is a “smart” pointer.

The iterator “knows” what it points to.

increased pointer: the next memory location

increased iterator: the next element in the container!

All STL containers are the same
Each container has methods begin(), end().
These return two iterators that determine a half-open range.
Three equal expressions: empty() ; size()==0 ; begin()==end()

Iterating over all elements of a container:
for (it = cont.begin(); it != cont.end(); ++it) process(*it);

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

STL: Algorithms

And a bunch of algorithms for free
min, max: comparison

min element, max element: convenient linear search

swap: exchange two elements

unique, reverse, rotate, random shuffle: array manipulation

sort, stable sort, nth element: sorting and searching

lower bound, upper bound: generalized bsearch
(also set/map methods!)

next permutation: quickly try all possibilities
(also works with equal elements!)

gcd: greatest common divisor (undocumented!)

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

STL: Algorithms

next permutation example
// generate all numbers with digits 1,1,3,4,7 in sorted order

#include <algorithm>

#include <iostream>

using namespace std;

int A[] = {1,1,3,4,7};

int main() {

do {

for (int i=0; i<5; ++i) cout << A[i];

cout << endl;

} while (next_permutation(A,A+5));

}

Tip: iterate over all K -element subsets by filling A with N − K
zeroes and K ones (in this order!)

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Bitsets

Subsets of 0, . . . ,N − 1

a subset { 0, 3, 5 }
good/bad numbers 0, 1, 2, 3, 4, 5

yes/no bits 1 0 0 1 0 1 <- binary!

the number 2^0+ 2^3+ 2^5 = 41

Bitwise operations
union: bitwise or

intersection: bitwise and

invert mask: bitwise xor

set {i}: bitwise shifts: 1 << i

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Bitsets

Tricks to compute size
int size=0, tmp=subset; while (tmp) ++size, tmp&=tmp-1;

__builtin_popcount(subset);

Iterate over all subsets
for (int subset=0; subset < (1<<N); ++subset) {

for (int member=0; member<N; ++member) {

if (subset & 1<<member) ...

}

}

Important property: ∀A: all subsets of A are processed before A

Alternative for larger sets: bitset<N> in STL.

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Contest strategy

Write a bruteforce solution!
scores points!

usually easy to implement (bitsets, next perm)

use it to test your faster solution (if any)

combine both to be sure

if enough time, write a generator as well

Optimizations?
never prematurely!

never overwrite, always back up a working version

always compare both versions

Michal Forišek Implementation Techniques

Overview
Everything but coding

Coding

Conclusions

Correlation:
working, reliable code
short code
beautiful code

Never reinvent the wheel.

Programming is art, like poetry!

Extend your “vocabulary”.

Michal Forišek Implementation Techniques

	Overview
	Everything but coding
	Coding

